Thyroid hormone stimulates acetyl-coA carboxylase-alpha transcription in hepatocytes by modulating the composition of nuclear receptor complexes bound to a thyroid hormone response element - PubMed (original) (raw)

. 2001 Jan 12;276(2):974-83.

doi: 10.1074/jbc.M005894200.

Affiliations

Free article

Thyroid hormone stimulates acetyl-coA carboxylase-alpha transcription in hepatocytes by modulating the composition of nuclear receptor complexes bound to a thyroid hormone response element

Y Zhang et al. J Biol Chem. 2001.

Free article

Abstract

Triiodothyronine (T3) stimulates a 7-fold increase in transcription of the acetyl-CoA carboxylase-alpha (ACCalpha) gene in chick embryo hepatocytes. Here, we characterized an ACCalpha T3 response element (ACCalpha-T3RE) with unique functional and protein binding properties. ACCalpha-T3RE activated transcription both in the absence and presence of T3, with a greater activation observed in the presence of T3. In nuclear extracts from hepatocytes incubated in the absence of T3, ACCalpha-T3RE bound protein complexes (complexes 1 and 2) containing the liver X receptor (LXR) and the retinoid X receptor (RXR). In nuclear extracts from hepatocytes incubated in the presence of T3 for 24 h, ACCalpha-T3RE bound a different set of complexes. One complex contained LXR and RXR (complex 3) and another contained the nuclear T3 receptor (TR) and RXR (complex 4). Mutations of ACCalpha-T3RE that inhibited the binding of complexes 1 and 2 decreased transcriptional activation in the absence of T3, and mutations of ACCalpha-T3RE that inhibited the binding of complexes 3 and 4 decreased transcriptional activation in the presence of T3. The stimulation of ACCalpha transcription caused by T3 was closely associated with changes in the binding of complexes 1-4 to ACCalpha-T3RE. These data suggest that T3 regulates ACCalpha transcription by a novel mechanism involving changes in the composition of nuclear receptor complexes bound to ACCalpha-T3RE. We propose that complexes containing LXR/RXR ensure a basal level of ACCalpha expression for the synthesis of structural lipids in cell membranes and that complexes containing LXR/RXR and TR/RXR mediate the stimulation of ACCalpha expression caused by T3.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources