Synthesis of the translational apparatus is regulated at the translational level - PubMed (original) (raw)
Review
Synthesis of the translational apparatus is regulated at the translational level
O Meyuhas. Eur J Biochem. 2000 Nov.
Free article
Abstract
The synthesis of many mammalian proteins associated with the translational apparatus is selectively regulated by mitogenic and nutritional stimuli, at the translational level. The apparent advantages of the regulation of gene expression at the translational level are the speed and the readily reversible nature of the response to altering physiological conditions. These two features enable cells to rapidly repress the biosynthesis of the translational machinery upon shortage of amino acids or growth arrest, thus rapidly blocking unnecessary energy wastage. Likewise, when amino acids are replenished or mitogenic stimulation is applied, then cells can rapidly respond in resuming the costly biosynthesis of the translational apparatus. A structural hallmark, common to mRNAs encoding many components of the translational machinery, is the presence of a 5' terminal oligopyrimidine tract (5'TOP), referred to as TOP mRNAs. This structural motif comprises the core of the translational cis-regulatory element of these mRNAs. The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli. A special emphasis is put on the pivotal role played by ribosomal protein S6 kinase (S6K) in this mode of regulation, and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K. Finally, the possible involvement of pyrimidine-binding proteins in the translational control of TOP mRNAs is discussed.
Similar articles
- Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation.
Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, Avruch J, Meyuhas O. Tang H, et al. Mol Cell Biol. 2001 Dec;21(24):8671-83. doi: 10.1128/MCB.21.24.8671-8683.2001. Mol Cell Biol. 2001. PMID: 11713299 Free PMC article. - Ribosomal protein S6 kinase from TOP mRNAs to cell size.
Meyuhas O, Dreazen A. Meyuhas O, et al. Prog Mol Biol Transl Sci. 2009;90:109-53. doi: 10.1016/S1877-1173(09)90003-5. Epub 2009 Oct 27. Prog Mol Biol Transl Sci. 2009. PMID: 20374740 Review. - Vertebrate mRNAs with a 5'-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element.
Avni D, Shama S, Loreni F, Meyuhas O. Avni D, et al. Mol Cell Biol. 1994 Jun;14(6):3822-33. doi: 10.1128/mcb.14.6.3822-3833.1994. Mol Cell Biol. 1994. PMID: 8196625 Free PMC article. - Lithium can relieve translational repression of TOP mRNAs elicited by various blocks along the cell cycle in a glycogen synthase kinase-3- and S6-kinase-independent manner.
Stolovich M, Lerer T, Bolkier Y, Cohen H, Meyuhas O. Stolovich M, et al. J Biol Chem. 2005 Feb 18;280(7):5336-42. doi: 10.1074/jbc.M412434200. Epub 2004 Nov 29. J Biol Chem. 2005. PMID: 15569665 - Translational control of ribosomal protein production in mammalian cells.
Perry RP, Meyuhas O. Perry RP, et al. Enzyme. 1990;44(1-4):83-92. doi: 10.1159/000468749. Enzyme. 1990. PMID: 2133661 Review.
Cited by
- La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1).
Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y, Tahmasebi S, Healy D, Hoang HD, Jensen JM, Diao IT, Lussier A, Dajadian C, Padmanabhan N, Wang W, Matta-Camacho E, Hearnden J, Smith EM, Tsukumo Y, Yanagiya A, Morita M, Petroulakis E, González JL, Hernández G, Alain T, Damgaard CK. Fonseca BD, et al. J Biol Chem. 2015 Jun 26;290(26):15996-6020. doi: 10.1074/jbc.M114.621730. Epub 2015 May 4. J Biol Chem. 2015. PMID: 25940091 Free PMC article. - Ribosomal protein S6 associates with alphavirus nonstructural protein 2 and mediates expression from alphavirus messages.
Montgomery SA, Berglund P, Beard CW, Johnston RE. Montgomery SA, et al. J Virol. 2006 Aug;80(15):7729-39. doi: 10.1128/JVI.00425-06. J Virol. 2006. PMID: 16840351 Free PMC article. - Nucleolar adaptation in human cancer.
Maggi LB Jr, Weber JD. Maggi LB Jr, et al. Cancer Invest. 2005;23(7):599-608. doi: 10.1080/07357900500283085. Cancer Invest. 2005. PMID: 16305988 Free PMC article. Review. - Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation.
Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD. Olanich ME, et al. Oncogene. 2011 Jan 6;30(1):77-86. doi: 10.1038/onc.2010.404. Epub 2010 Aug 30. Oncogene. 2011. PMID: 20802533 Free PMC article. - On-Site Ribosome Remodeling by Locally Synthesized Ribosomal Proteins in Axons.
Shigeoka T, Koppers M, Wong HH, Lin JQ, Cagnetta R, Dwivedy A, de Freitas Nascimento J, van Tartwijk FW, Ströhl F, Cioni JM, Schaeffer J, Carrington M, Kaminski CF, Jung H, Harris WA, Holt CE. Shigeoka T, et al. Cell Rep. 2019 Dec 10;29(11):3605-3619.e10. doi: 10.1016/j.celrep.2019.11.025. Cell Rep. 2019. PMID: 31825839 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources