Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate - PubMed (original) (raw)
. 2000 Nov 21;39(46):14054-64.
doi: 10.1021/bi0018178.
Affiliations
- PMID: 11087352
- DOI: 10.1021/bi0018178
Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate
R M Werner et al. Biochemistry. 2000.
Abstract
The DNA repair enzyme uracil DNA glycosylase catalyzes the first step in the uracil base excision repair pathway, the hydrolytic cleavage of the N-glycosidic bond of deoxyuridine in DNA. Here we report kinetic isotope effect (KIE) measurements that have allowed the determination of the transition-state structure for this important reaction. The small primary (13)C KIE (=1.010 +/- 0.009) and the large secondary alpha-deuterium KIE (=1.201 +/- 0.021) indicate that (i) the glycosidic bond is essentially completely broken in the transition state and (ii) there is significant sp(2) character at the anomeric carbon. Large secondary beta-deuterium KIEs were observed when [2'R-(2)H] = 1.102 +/- 0.011 and [2'S-(2)H] = 1.106 +/- 0.010. The nearly equal and large magnitudes of the two stereospecific beta-deuterium KIEs indicate strong hyperconjugation between the elongated glycosidic bond and both of the C2'-H2' bonds. Geometric interpretation of these beta-deuterium KIEs indicates that the furanose ring adopts a mild 3'-exo sugar pucker in the transition state, as would be expected for maximal stabilization of an oxocarbenium ion. Taken together, these results strongly indicate that the reaction proceeds through a dissociative transition state, with complete dissociation of the uracil anion followed by addition of water. To our knowledge, this is the first transition-state structure determined for enzymatic cleavage of the glycosidic linkage in a pyrimidine deoxyribonucleotide.
Similar articles
- Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
Stivers JT, Pankiewicz KW, Watanabe KA. Stivers JT, et al. Biochemistry. 1999 Jan 19;38(3):952-63. doi: 10.1021/bi9818669. Biochemistry. 1999. PMID: 9893991 - Escherichia coli uracil DNA glycosylase: NMR characterization of the short hydrogen bond from His187 to uracil O2.
Drohat AC, Stivers JT. Drohat AC, et al. Biochemistry. 2000 Oct 3;39(39):11865-75. doi: 10.1021/bi000922e. Biochemistry. 2000. PMID: 11009598 - Reconstructing the substrate for uracil DNA glycosylase: tracking the transmission of binding energy in catalysis.
Jiang YL, Stivers JT. Jiang YL, et al. Biochemistry. 2001 Jun 26;40(25):7710-9. doi: 10.1021/bi010622c. Biochemistry. 2001. PMID: 11412125 - Pathways of accumulation and repair of deoxyuridine residues in DNA of higher and lower organisms.
Vasilenko NL, Nevinsky GA. Vasilenko NL, et al. Biochemistry (Mosc). 2003 Feb;68(2):135-51. doi: 10.1023/a:1022637026155. Biochemistry (Mosc). 2003. PMID: 12693959 Review. - Uracil DNA glycosylase: insights from a master catalyst.
Stivers JT, Drohat AC. Stivers JT, et al. Arch Biochem Biophys. 2001 Dec 1;396(1):1-9. doi: 10.1006/abbi.2001.2605. Arch Biochem Biophys. 2001. PMID: 11716455 Review.
Cited by
- Influence of a Single Deuterium Substitution for Protium on the Frequency Generation of Different-Size Bubbles in IFNA17.
Basov A, Dorohova A, Malyshko V, Moiseev A, Svidlov A, Bezhenar M, Nechipurenko Y, Dzhimak S. Basov A, et al. Int J Mol Sci. 2023 Jul 28;24(15):12137. doi: 10.3390/ijms241512137. Int J Mol Sci. 2023. PMID: 37569512 Free PMC article. - Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate.
Hung SH, Elliott GI, Ramkumar TR, Burtnyak L, McGrenaghan CJ, Alkuzweny S, Quaiyum S, Iwata-Reuyl D, Pan X, Green BD, Kelly VP, de Crécy-Lagard V, Swairjo MA. Hung SH, et al. Nucleic Acids Res. 2023 Jan 25;51(2):935-951. doi: 10.1093/nar/gkac1231. Nucleic Acids Res. 2023. PMID: 36610787 Free PMC article. - Influence of Single Deuterium Replacement on Frequency of Hydrogen Bond Dissociation in IFNA17 under the Highest Critical Energy Range.
Basov A, Drobotenko M, Svidlov A, Bezhenar M, Gerasimenko E, Moiseev A, Malyshko V, Dorohova A, Drozdov A, Baryshev M, Dzhimak S. Basov A, et al. Int J Mol Sci. 2022 Dec 7;23(24):15487. doi: 10.3390/ijms232415487. Int J Mol Sci. 2022. PMID: 36555136 Free PMC article. - Structural Insights into the Mechanism of Base Excision by MBD4.
Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. Pidugu LS, et al. J Mol Biol. 2021 Jul 23;433(15):167097. doi: 10.1016/j.jmb.2021.167097. Epub 2021 Jun 6. J Mol Biol. 2021. PMID: 34107280 Free PMC article. - NMR solution structures of Runella slithyformis RNA 2'-phosphotransferase Tpt1 provide insights into NAD+ binding and specificity.
Alphonse S, Banerjee A, Dantuluri S, Shuman S, Ghose R. Alphonse S, et al. Nucleic Acids Res. 2021 Sep 27;49(17):9607-9624. doi: 10.1093/nar/gkab241. Nucleic Acids Res. 2021. PMID: 33880546 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous