Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts - PubMed (original) (raw)

Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts

O K Okamoto et al. Arch Environ Contam Toxicol. 2001 Jan.

Abstract

To investigate adaptive responses to metal stress at the subcellular level, the oxidative balance in isolated chloroplasts was evaluated for the first time in the unicellular alga Gonyaulax polyedra exposed to the toxic metals Hg(2+), Cd(2+), Pb(2+), and Cu(2+). Different antioxidant responses were verified according to the metal and model of stress applied. Cells chronically exposed to metals exhibited high activity of the antioxidant enzymes superoxide dismutase and ascorbate peroxidase, high glutathione content, and decrease of peridinin levels, whereas no significant changes were detected for beta-carotene levels. In contrast, cells subjected to acute metal stress displayed twice as much beta-carotene but only a slight increase in superoxide dismutase and ascorbate peroxidase activities. The correlation of acute metal treatment and oxidative stress was inferred from the higher oxygen uptake and decreased reduced glutathione pool found in treated cells. In addition, increased oxidative damage to proteins and lipids occurred mainly in cells under acute stress. Pb(2+) was the most damaging toxicant, causing protein oxidation and lipid peroxidation even at chronic treatment. These results indicate that heavy metals are able to induce oxidative stress in chloroplasts of G. polyedra, particularly under acute conditions. Nevertheless, the maintenance of a high antioxidant capacity within chloroplasts seems to be an important strategy during acclimation of G. polyedra to chronic metal stress. By acting at the subcellular site, where oxidative stress is triggered, induction of such chloroplast antioxidants might be crucial for cell survival during exposure to heavy metals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources