The origins of genomic duplications in Arabidopsis - PubMed (original) (raw)
The origins of genomic duplications in Arabidopsis
T J Vision et al. Science. 2000.
Abstract
Large segmental duplications cover much of the Arabidopsis thaliana genome. Little is known about their origins. We show that they are primarily due to at least four different large-scale duplication events that occurred 100 to 200 million years ago, a formative period in the diversification of the angiosperms. A better understanding of the complex structural history of angiosperm genomes is necessary to make full use of Arabidopsis as a genetic model for other plant species.
Similar articles
- Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events.
Bowers JE, Chapman BA, Rong J, Paterson AH. Bowers JE, et al. Nature. 2003 Mar 27;422(6930):433-8. doi: 10.1038/nature01521. Nature. 2003. PMID: 12660784 - Large-Scale Gene Relocations following an Ancient Genome Triplication Associated with the Diversification of Core Eudicots.
Wang Y, Ficklin SP, Wang X, Feltus FA, Paterson AH. Wang Y, et al. PLoS One. 2016 May 19;11(5):e0155637. doi: 10.1371/journal.pone.0155637. eCollection 2016. PLoS One. 2016. PMID: 27195960 Free PMC article. - Journey through the past: 150 million years of plant genome evolution.
Proost S, Pattyn P, Gerats T, Van de Peer Y. Proost S, et al. Plant J. 2011 Apr;66(1):58-65. doi: 10.1111/j.1365-313X.2011.04521.x. Plant J. 2011. PMID: 21443623 - Comparing Arabidopsis to other flowering plants.
Barnes S. Barnes S. Curr Opin Plant Biol. 2002 Apr;5(2):128-34. doi: 10.1016/s1369-5266(02)00239-x. Curr Opin Plant Biol. 2002. PMID: 11856608 Review. - The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress.
Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, Trigiano RN, Jiao Y, Chen F. Zhang L, et al. Plant Cell Environ. 2020 Dec;43(12):2847-2856. doi: 10.1111/pce.13898. Epub 2020 Oct 13. Plant Cell Environ. 2020. PMID: 33001478 Review.
Cited by
- Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses.
Yue R, Tie S, Sun T, Zhang L, Yang Y, Qi J, Yan S, Han X, Wang H, Shen C. Yue R, et al. PLoS One. 2015 Mar 5;10(3):e0118751. doi: 10.1371/journal.pone.0118751. eCollection 2015. PLoS One. 2015. PMID: 25742625 Free PMC article. - Comprehensive Evolutionary and Expression Analysis of FCS-Like Zinc finger Gene Family Yields Insights into Their Origin, Expansion and Divergence.
Jamsheer K M, Mannully CT, Gopan N, Laxmi A. Jamsheer K M, et al. PLoS One. 2015 Aug 7;10(8):e0134328. doi: 10.1371/journal.pone.0134328. eCollection 2015. PLoS One. 2015. PMID: 26252898 Free PMC article. - The RPN1 subunit of the 26S proteasome in Arabidopsis is essential for embryogenesis.
Brukhin V, Gheyselinck J, Gagliardini V, Genschik P, Grossniklaus U. Brukhin V, et al. Plant Cell. 2005 Oct;17(10):2723-37. doi: 10.1105/tpc.105.034975. Epub 2005 Sep 16. Plant Cell. 2005. PMID: 16169895 Free PMC article. - Two-component signal transduction pathways in Arabidopsis.
Hwang I, Chen HC, Sheen J. Hwang I, et al. Plant Physiol. 2002 Jun;129(2):500-15. doi: 10.1104/pp.005504. Plant Physiol. 2002. PMID: 12068096 Free PMC article. Review. - Analyses of synteny between Arabidopsis thaliana and species in the Asteraceae reveal a complex network of small syntenic segments and major chromosomal rearrangements.
Timms L, Jimenez R, Chase M, Lavelle D, McHale L, Kozik A, Lai Z, Heesacker A, Knapp S, Rieseberg L, Michelmore R, Kesseli R. Timms L, et al. Genetics. 2006 Aug;173(4):2227-35. doi: 10.1534/genetics.105.049205. Epub 2006 Jun 18. Genetics. 2006. PMID: 16783026 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources