Preparation of immunoliposomes bearing poly(ethylene glycol)-coupled monoclonal antibody linked via a cleavable disulfide bond for ex vivo applications - PubMed (original) (raw)
Preparation of immunoliposomes bearing poly(ethylene glycol)-coupled monoclonal antibody linked via a cleavable disulfide bond for ex vivo applications
M Mercadal et al. Biochim Biophys Acta. 2000.
Free article
Abstract
Several methods for the preparation of sterically stabilized immunoliposomes (SIL) have recently been described. This report examines an established method for coupling anti-CD34 My10 mAb to poly(ethylene glycol)-liposomes (PEG-liposomes) containing the anchor pyridyldithiopropionylamino-PEG-phosphatidylethanolamine (PDP-PEG-PE) via a cleavable disulfide bond. Efficient attachment of pyridyldithio-derivatized mAb took place (equivalent to coupling ca. 70% of total input protein) at 2 mol percent of the functionalized PEG-lipid. The My10-SIL bound specifically to CD34+ cells (human leukemic KG-1a and hematopoietic progenitor cells) and the extent of binding was a function of liposomal lipid concentration, the mAb density in the liposome surface and the CD34 cell expression. In mixtures with CD34- cells (CHO or Jurkat), CD34+KG-1a cells were determined by flow cytometry at percentages (1-4%) similar to those reported in clinical samples (such as cord blood, mobilized peripheral blood and bone marrow) using a direct immunostaining with My10-SIL. The disulfide bond was stable in cell culture medium (10% of fetal calf serum) during 8 h and cell-bound SIL can be released from cells by treatment with dithiothreitol as reducing agent under mild conditions (1 h of incubation with 50 mM DTT at 20 degrees C). SIL binding and subsequent dithiothreitol treatment did not influence the cell viability. Our approach should contribute to the development of targetable liposomal vehicles to CD34+ cells for use in ex vivo conditions as sorting of hematopoietic stem cells.
Similar articles
- A novel strategy affords high-yield coupling of antibody to extremities of liposomal surface-grafted PEG chains.
Mercadal M, Domingo JC, Petriz J, Garcia J, de Madariaga MA. Mercadal M, et al. Biochim Biophys Acta. 1999 Apr 14;1418(1):232-8. doi: 10.1016/s0005-2736(99)00033-4. Biochim Biophys Acta. 1999. PMID: 10209227 - Preparation of PEG-grafted immunomagnetoliposomes entrapping citrate stabilized magnetite particles and their application in CD34+ cell sorting.
Domingo JC, Mercadal M, Petriz J, De Madariaga MA. Domingo JC, et al. J Microencapsul. 2001 Jan-Feb;18(1):41-54. doi: 10.1080/026520401750038593. J Microencapsul. 2001. PMID: 11201340 - Preparation of long-circulating immunoliposomes using PEG-cholesterol conjugates: effect of the spacer arm between PEG and cholesterol on liposomal characteristics.
Carrion C, Domingo JC, de Madariaga MA. Carrion C, et al. Chem Phys Lipids. 2001 Nov;113(1-2):97-110. doi: 10.1016/s0009-3084(01)00178-5. Chem Phys Lipids. 2001. PMID: 11687230 - CD34 stem cell stories and lessons from the CD34 wars: the Landsteiner Lecture 2009.
Civin CI. Civin CI. Transfusion. 2010 Sep;50(9):2046-56. doi: 10.1111/j.1537-2995.2010.02729.x. Transfusion. 2010. PMID: 20561292 Review. No abstract available. - Immunoliposomes: preparation, properties, and applications.
Sullivan SM, Connor J, Huang L. Sullivan SM, et al. Med Res Rev. 1986 Apr-Jun;6(2):171-95. doi: 10.1002/med.2610060203. Med Res Rev. 1986. PMID: 3520190 Review. No abstract available.
Cited by
- RNA interference: a potent tool for gene-specific therapeutics.
Ichim TE, Li M, Qian H, Popov IA, Rycerz K, Zheng X, White D, Zhong R, Min WP. Ichim TE, et al. Am J Transplant. 2004 Aug;4(8):1227-36. doi: 10.1111/j.1600-6143.2004.00530.x. Am J Transplant. 2004. PMID: 15268723 Free PMC article. Review. - Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro.
Wong BC, Zhang H, Qin L, Chen H, Fang C, Lu A, Yang Z. Wong BC, et al. Drug Des Devel Ther. 2014 Jul 22;8:993-1001. doi: 10.2147/DDDT.S63235. eCollection 2014. Drug Des Devel Ther. 2014. PMID: 25092965 Free PMC article. - Development of a Bioconjugate Platform for Modifying the Immune Response of Autoreactive Cytotoxic T Lymphocytes Involved in Type 1 Diabetes.
Nandedkar-Kulkarni N, Vartak AR, Sucheck SJ, Wall KA, Quinn A, Morran MP, McInerney MF. Nandedkar-Kulkarni N, et al. Bioconjug Chem. 2019 Jul 17;30(7):2049-2059. doi: 10.1021/acs.bioconjchem.9b00332. Epub 2019 Jul 5. Bioconjug Chem. 2019. PMID: 31274300 Free PMC article. - Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body.
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop-Schnürch A. Hock N, et al. Adv Sci (Weinh). 2022 Jan;9(1):e2102451. doi: 10.1002/advs.202102451. Epub 2021 Nov 12. Adv Sci (Weinh). 2022. PMID: 34773391 Free PMC article. Review. - Cleavable PEGylation: a strategy for overcoming the "PEG dilemma" in efficient drug delivery.
Fang Y, Xue J, Gao S, Lu A, Yang D, Jiang H, He Y, Shi K. Fang Y, et al. Drug Deliv. 2017 Dec;24(sup1):22-32. doi: 10.1080/10717544.2017.1388451. Drug Deliv. 2017. PMID: 29069920 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical