A global geometric framework for nonlinear dimensionality reduction - PubMed (original) (raw)
A global geometric framework for nonlinear dimensionality reduction
J B Tenenbaum et al. Science. 2000.
Abstract
Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of dimensionality reduction: finding meaningful low-dimensional structures hidden in their high-dimensional observations. The human brain confronts the same problem in everyday perception, extracting from its high-dimensional sensory inputs-30,000 auditory nerve fibers or 10(6) optic nerve fibers-a manageably small number of perceptually relevant features. Here we describe an approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set. Unlike classical techniques such as principal component analysis (PCA) and multidimensional scaling (MDS), our approach is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions. In contrast to previous algorithms for nonlinear dimensionality reduction, ours efficiently computes a globally optimal solution, and, for an important class of data manifolds, is guaranteed to converge asymptotically to the true structure.
Comment in
- Science 2002 Jan 4;295(5552):2319-23
- Cognition. The manifold ways of perception.
Seung HS, Lee DD. Seung HS, et al. Science. 2000 Dec 22;290(5500):2268-9. doi: 10.1126/science.290.5500.2268. Science. 2000. PMID: 11188725
Similar articles
- Nonlinear dimensionality reduction by locally linear embedding.
Roweis ST, Saul LK. Roweis ST, et al. Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323. Science. 2000. PMID: 11125150 - Large margin low rank tensor analysis.
Zhong G, Cheriet M. Zhong G, et al. Neural Comput. 2014 Apr;26(4):761-80. doi: 10.1162/NECO_a_00570. Epub 2014 Jan 30. Neural Comput. 2014. PMID: 24479778 - Nonlinear Dimensionality Reduction by Minimum Curvilinearity for Unsupervised Discovery of Patterns in Multidimensional Proteomic Data.
Alessio M, Cannistraci CV. Alessio M, et al. Methods Mol Biol. 2016;1384:289-98. doi: 10.1007/978-1-4939-3255-9_16. Methods Mol Biol. 2016. PMID: 26611421 - The unreasonable effectiveness of small neural ensembles in high-dimensional brain.
Gorban AN, Makarov VA, Tyukin IY. Gorban AN, et al. Phys Life Rev. 2019 Jul;29:55-88. doi: 10.1016/j.plrev.2018.09.005. Epub 2018 Oct 2. Phys Life Rev. 2019. PMID: 30366739 Review. - Performance of a Computational Model of the Mammalian Olfactory System.
Benjaminsson S, Herman P, Lansner A. Benjaminsson S, et al. In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 6. In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 6. PMID: 26042330 Free Books & Documents. Review.
Cited by
- Key drivers structuring rotifer communities in ponds: insights into an agricultural landscape.
Onandia G, Maassen S, Musseau CL, Berger SA, Olmo C, Jeschke JM, Lischeid G. Onandia G, et al. J Plankton Res. 2021 May 6;43(3):396-412. doi: 10.1093/plankt/fbab033. eCollection 2021 May-Jun. J Plankton Res. 2021. PMID: 34084088 Free PMC article. - Fast discriminative stochastic neighbor embedding analysis.
Zheng J, Qiu H, Xu X, Wang W, Huang Q. Zheng J, et al. Comput Math Methods Med. 2013;2013:106867. doi: 10.1155/2013/106867. Epub 2013 Jun 18. Comput Math Methods Med. 2013. PMID: 23853667 Free PMC article. - Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.
Li S, Liu B, Zhang C. Li S, et al. Comput Intell Neurosci. 2016;2016:4920670. doi: 10.1155/2016/4920670. Epub 2016 May 9. Comput Intell Neurosci. 2016. PMID: 27247562 Free PMC article. - The primacy model and the structure of olfactory space.
Giaffar H, Shuvaev S, Rinberg D, Koulakov AA. Giaffar H, et al. PLoS Comput Biol. 2024 Sep 10;20(9):e1012379. doi: 10.1371/journal.pcbi.1012379. eCollection 2024 Sep. PLoS Comput Biol. 2024. PMID: 39255274 Free PMC article. - An evaluation of how connectopic mapping reveals visual field maps in V1.
Watson DM, Andrews TJ. Watson DM, et al. Sci Rep. 2022 Sep 28;12(1):16249. doi: 10.1038/s41598-022-20322-4. Sci Rep. 2022. PMID: 36171242 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous