Point mutations of the mtDNA control region in normal and neurodegenerative human brains - PubMed (original) (raw)
Point mutations of the mtDNA control region in normal and neurodegenerative human brains
P F Chinnery et al. Am J Hum Genet. 2001 Feb.
Abstract
Recent observations in cultured human fibroblasts suggest that the accumulation of point mutations in the noncoding control region of mtDNA may be important in human aging. We studied the mtDNA control region in brain tissue from 31 normal elderly individuals, from 35 individuals who had Alzheimer disease, and from 47 individuals who had dementia with Lewy bodies. We found no evidence that these somatic mtDNA point mutations accumulate either in the brains of normal elderly individuals or in the brains of individuals with neurodegenerative disease.
Figures
Figure 1
The mtDNA control region, showing the position of the sequence changes seen in brain tissue isolated from elderly normal individuals (
_n_=31
) and from individuals with either AD (
_n_=35
) or DLB (
_n_=47
), at nt 100–576 (numbered according to the revised Cambridge Reference Sequence [Anderson et al. ; Andrews et al. 1999]). CSB = conserved sequence blocks; d = deletion; i = insertion; LSP = light-strand promoter; mtTFA = binding site for mitochondrial transcription factor A; OH = origin of heavy-strand replication; tRNA Phe = tRNA phenylalanine gene; tRNA Pro = tRNA proline gene.
Similar articles
- Mitochondrial DNA mutations in neurodegeneration.
Keogh MJ, Chinnery PF. Keogh MJ, et al. Biochim Biophys Acta. 2015 Nov;1847(11):1401-11. doi: 10.1016/j.bbabio.2015.05.015. Epub 2015 May 23. Biochim Biophys Acta. 2015. PMID: 26014345 Review. - Region-specific analysis of mitochondrial DNA deletions in neurodegenerative disorders in humans.
Mawrin C, Kirches E, Krause G, Schneider-Stock R, Bogerts B, Vorwerk CK, Dietzmann K. Mawrin C, et al. Neurosci Lett. 2004 Mar 4;357(2):111-4. doi: 10.1016/j.neulet.2003.11.073. Neurosci Lett. 2004. PMID: 15036587 - Low mutational burden of individual acquired mitochondrial DNA mutations in brain.
Simon DK, Lin MT, Ahn CH, Liu GJ, Gibson GE, Beal MF, Johns DR. Simon DK, et al. Genomics. 2001 Apr 1;73(1):113-6. doi: 10.1006/geno.2001.6515. Genomics. 2001. PMID: 11352572 - High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain.
Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF. Lin MT, et al. Hum Mol Genet. 2002 Jan 15;11(2):133-45. doi: 10.1093/hmg/11.2.133. Hum Mol Genet. 2002. PMID: 11809722 - Mitochondrial mutagenesis in the brain in forensic and pathological research.
von Wurmb-Schwark N, Schwark T, Meissner C, Oehmichen M. von Wurmb-Schwark N, et al. Leg Med (Tokyo). 2003 Mar;5(1):1-6. doi: 10.1016/s1344-6223(03)00003-8. Leg Med (Tokyo). 2003. PMID: 12935643 Review.
Cited by
- Nanobiopsy investigation of the subcellular mtDNA heteroplasmy in human tissues.
Bury A, Pyle A, Vincent AE, Actis P, Hudson G. Bury A, et al. Sci Rep. 2024 Jun 14;14(1):13789. doi: 10.1038/s41598-024-64455-0. Sci Rep. 2024. PMID: 38877095 Free PMC article. - The Role of Mitochondrial Genes in Neurodegenerative Disorders.
Kumar R, Harilal S, Parambi DGT, Kanthlal SK, Rahman MA, Alexiou A, Batiha GE, Mathew B. Kumar R, et al. Curr Neuropharmacol. 2022;20(5):824-835. doi: 10.2174/1570159X19666210908163839. Curr Neuropharmacol. 2022. PMID: 34503413 Free PMC article. Review. - Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps.
Hill GE. Hill GE. Ecol Evol. 2020 Aug 3;10(17):9048-9059. doi: 10.1002/ece3.6640. eCollection 2020 Sep. Ecol Evol. 2020. PMID: 32953045 Free PMC article. - MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association.
Marom S, Friger M, Mishmar D. Marom S, et al. Sci Rep. 2017 Feb 23;7:43449. doi: 10.1038/srep43449. Sci Rep. 2017. PMID: 28230165 Free PMC article. - Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains.
Wei W, Keogh MJ, Wilson I, Coxhead J, Ryan S, Rollinson S, Griffin H, Kurzawa-Akanbi M, Santibanez-Koref M, Talbot K, Turner MR, McKenzie CA, Troakes C, Attems J, Smith C, Al Sarraj S, Morris CM, Ansorge O, Pickering-Brown S, Ironside JW, Chinnery PF. Wei W, et al. Acta Neuropathol Commun. 2017 Feb 2;5(1):13. doi: 10.1186/s40478-016-0404-6. Acta Neuropathol Commun. 2017. PMID: 28153046 Free PMC article.
References
Electronic-Database Information
- HVR-Base of the Max Planck Institute for Evolutionary Genetics, http://www.eva.mpg.de/hvrbase/
- MITOMAP: a Human Mitochondrial Genome Database, http://www.gen.emory.edu/cgi-bin/MITOMAP
References
- Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465 - PubMed
- Andrews RM, Kubacka I, Chinnery PF, Turnbull DM, Lightowlers RN, Howell N (1999) Reanalysis and revision of the Cambridge Reference Sequence. Nat Genet 23:147 - PubMed
- Brierley EJ, Johnson MA, Lightowlers RN, James OFW, Turnbull DM (1998) Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol 43:217–223 - PubMed
- Chinnery PF, Taylor G, Howell N, Andrews RM, Morris CM, McKeith IG, Perry RH, Edwardson JA, Turnbull DM (2000) Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies. Neurology 55:302–304 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical