Use of TLS parameters to model anisotropic displacements in macromolecular refinement - PubMed (original) (raw)
Use of TLS parameters to model anisotropic displacements in macromolecular refinement
M D Winn et al. Acta Crystallogr D Biol Crystallogr. 2001 Jan.
Abstract
An essential step in macromolecular refinement is the selection of model parameters which give as good a description of the experimental data as possible while retaining a realistic data-to-parameter ratio. This is particularly true of the choice of atomic displacement parameters, where the move from individual isotropic to individual anisotropic refinement involves a sixfold increase in the number of required displacement parameters. The number of refinement parameters can be reduced by using collective variables rather than independent atomic variables and one of the simplest examples of this is the TLS parameterization for describing the translation, libration and screw-rotation displacements of a pseudo-rigid body. This article describes the implementation of the TLS parameterization in the macromolecular refinement program REFMAC. Derivatives of the residual with respect to the TLS parameters are expanded in terms of the derivatives with respect to individual anisotropic U values, which in turn are calculated using a fast Fourier transform technique. TLS refinement is therefore fast and can be used routinely. Examples of TLS refinement are given for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a transcription activator GerE, for both of which there is data to only 2.0 A, so that individual anisotropic refinement is not feasible. GAPDH has been refined with between one and four TLS groups in the asymmetric unit and GerE with six TLS groups. In both cases, inclusion of TLS parameters gives improved refinement statistics and in particular an improvement in R and free R values of several percent. Furthermore, GAPDH and GerE have two and six molecules in the asymmetric unit, respectively, and in each case the displacement parameters differ significantly between molecules. These differences are well accounted for by the TLS parameterization, leaving residual local displacements which are very similar between molecules and to which NCS restraints can be applied.
Similar articles
- TLS from fundamentals to practice.
Urzhumtsev A, Afonine PV, Adams PD. Urzhumtsev A, et al. Crystallogr Rev. 2013 Jul 1;19(4):230-270. doi: 10.1080/0889311X.2013.835806. Crystallogr Rev. 2013. PMID: 25249713 Free PMC article. - Efficient anisotropic refinement of macromolecular structures using FFT.
Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ. Murshudov GN, et al. Acta Crystallogr D Biol Crystallogr. 1999 Jan;55(Pt 1):247-55. doi: 10.1107/S090744499801405X. Epub 1999 Jan 1. Acta Crystallogr D Biol Crystallogr. 1999. PMID: 10089417 - Estimating temperature-dependent anisotropic hydrogen displacements with the invariom database and a new segmented rigid-body analysis program.
Lübben J, Bourhis LJ, Dittrich B. Lübben J, et al. J Appl Crystallogr. 2015 Nov 10;48(Pt 6):1785-1793. doi: 10.1107/S1600576715018075. eCollection 2015 Dec 1. J Appl Crystallogr. 2015. PMID: 26664341 Free PMC article. - Expanding the model: anisotropic displacement parameters in protein structure refinement.
Merritt EA. Merritt EA. Acta Crystallogr D Biol Crystallogr. 1999 Jun;55(Pt 6):1109-17. doi: 10.1107/s0907444999003789. Acta Crystallogr D Biol Crystallogr. 1999. PMID: 10329772 Review. - Structure Refinement at Atomic Resolution.
Jaskolski M. Jaskolski M. Methods Mol Biol. 2017;1607:549-563. doi: 10.1007/978-1-4939-7000-1_22. Methods Mol Biol. 2017. PMID: 28573588 Review.
Cited by
- Assessing the chemical accuracy of protein structures via peptide acidity.
Anderson JS, Hernández G, LeMaster DM. Anderson JS, et al. Biophys Chem. 2013 Jan;171:63-75. doi: 10.1016/j.bpc.2012.10.005. Epub 2012 Nov 2. Biophys Chem. 2013. PMID: 23182463 Free PMC article. - Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins.
Golczak M, Kiser PD, Sears AE, Lodowski DT, Blaner WS, Palczewski K. Golczak M, et al. J Biol Chem. 2012 Jul 6;287(28):23790-807. doi: 10.1074/jbc.M112.361550. Epub 2012 May 17. J Biol Chem. 2012. PMID: 22605381 Free PMC article. - Biochemical and structural studies of uncharacterized protein PA0743 from Pseudomonas aeruginosa revealed NAD+-dependent L-serine dehydrogenase.
Tchigvintsev A, Singer A, Brown G, Flick R, Evdokimova E, Tan K, Gonzalez CF, Savchenko A, Yakunin AF. Tchigvintsev A, et al. J Biol Chem. 2012 Jan 13;287(3):1874-83. doi: 10.1074/jbc.M111.294561. Epub 2011 Nov 28. J Biol Chem. 2012. PMID: 22128181 Free PMC article. - Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.
Martinez J, Truffault V, Hothorn M. Martinez J, et al. J Biol Chem. 2015 Sep 18;290(38):23348-60. doi: 10.1074/jbc.M115.674473. Epub 2015 Jul 28. J Biol Chem. 2015. PMID: 26221030 Free PMC article. - Oligomeric interface modulation causes misregulation of purine 5´-nucleotidase in relapsed leukemia.
Hnízda A, Škerlová J, Fábry M, Pachl P, Šinalová M, Vrzal L, Man P, Novák P, Řezáčová P, Veverka V. Hnízda A, et al. BMC Biol. 2016 Oct 19;14(1):91. doi: 10.1186/s12915-016-0313-y. BMC Biol. 2016. PMID: 27756303 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials