Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra - PubMed (original) (raw)
Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra
G Costa et al. Brain Res. 2001.
Abstract
While the work of several groups has shown the neuroprotective effects of nicotine in vitro, evidences for the same effects in vivo are controversial, mainly regarding neuroprotection in experimental models of Parkinson's disease. In this context, we investigated the capability of various systemic administration schedules of nicotine to prevent the loss of striatal dopamine levels produced by partial or extensive 6-hydroxydopamine (6-OHDA) lesion of rat substantia nigra (SN). Eight days after 6- and 10-microg injections of 6-OHDA in the SN there was a significant decrease of dopamine concentrations in the corpus striatum (CS) and a concomitant increase in dopamine turnover. While 10 microg 6-OHDA produced an almost complete depletion of dopamine in the SN, 6 microg decreased dopamine levels by 50%. Subcutaneous nicotine (1 mg/kg) administered 4 h before and 20, 44 and 68 h after 6 microg 6-OHDA, prevented significantly the striatal dopamine loss. Administered only 18 or 4 h before or only 20, 44 and 68 h after, nicotine failed to counteract the loss of dopamine or the increase in dopamine turnover observed in the CS. Nicotine also failed to prevent significantly the decrease of striatal dopamine levels produced by the 10-microg 6-OHDA intranigral dose. Chlorisondamine, a long-lasting nicotinic acetylcholine receptor antagonist, reverted significantly the nicotinic protective effects on dopamine concentrations. These results are showing that putative neuroprotective effects of nicotine in vivo depend on an acute intermittent administration schedule and on the extent of the brain lesion.
Similar articles
- The antioxidant drink effective microorganism-X (EM-X) pre-treatment attenuates the loss of nigrostriatal dopaminergic neurons in 6-hydroxydopamine-lesion rat model of Parkinson's disease.
Datla KP, Bennett RD, Zbarsky V, Ke B, Liang YF, Higa T, Bahorun T, Aruoma OI, Dexter DT. Datla KP, et al. J Pharm Pharmacol. 2004 May;56(5):649-54. doi: 10.1211/0022357023222. J Pharm Pharmacol. 2004. PMID: 15142343 - In vivo modulation of dopaminergic nigrostriatal pathways by cytisine derivatives: implications for Parkinson's Disease.
Abin-Carriquiry JA, Costa G, Urbanavicius J, Cassels BK, Rebolledo-Fuentes M, Wonnacott S, Dajas F. Abin-Carriquiry JA, et al. Eur J Pharmacol. 2008 Jul 28;589(1-3):80-4. doi: 10.1016/j.ejphar.2008.05.013. Epub 2008 May 20. Eur J Pharmacol. 2008. PMID: 18589414 - Multiple roles for nicotine in Parkinson's disease.
Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA. Quik M, et al. Biochem Pharmacol. 2009 Oct 1;78(7):677-85. doi: 10.1016/j.bcp.2009.05.003. Epub 2009 May 9. Biochem Pharmacol. 2009. PMID: 19433069 Free PMC article. Review. - Compensatory responses to nigrostriatal bundle injury. Studies with 6-hydroxydopamine in an animal model of parkinsonism.
Zigmond MJ, Berger TW, Grace AA, Stricker EM. Zigmond MJ, et al. Mol Chem Neuropathol. 1989 Jun;10(3):185-200. doi: 10.1007/BF03159728. Mol Chem Neuropathol. 1989. PMID: 2504173 Review.
Cited by
- Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.
Tobón-Velasco JC, Palafox-Sánchez V, Mendieta L, García E, Santamaría A, Chamorro-Cevallos G, Limón ID. Tobón-Velasco JC, et al. J Neural Transm (Vienna). 2013 Aug;120(8):1179-89. doi: 10.1007/s00702-013-0976-2. Epub 2013 Feb 21. J Neural Transm (Vienna). 2013. PMID: 23430275 - Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders.
Mitra S, Khatri SN, Maulik M, Bult-Ito A, Schulte M. Mitra S, et al. Int J Mol Sci. 2020 Jul 12;21(14):4918. doi: 10.3390/ijms21144918. Int J Mol Sci. 2020. PMID: 32664647 Free PMC article. Review. - Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease.
Duty S, Jenner P. Duty S, et al. Br J Pharmacol. 2011 Oct;164(4):1357-91. doi: 10.1111/j.1476-5381.2011.01426.x. Br J Pharmacol. 2011. PMID: 21486284 Free PMC article. Review. - Unhealthy Behaviours and Risk of Parkinson's Disease: A Mendelian Randomisation Study.
Heilbron K, Jensen MP, Bandres-Ciga S, Fontanillas P, Blauwendraat C, Nalls MA, Singleton AB, Smith GD, Cannon P, Noyce AJ; 23andMe Research Team. Heilbron K, et al. J Parkinsons Dis. 2021;11(4):1981-1993. doi: 10.3233/JPD-202487. J Parkinsons Dis. 2021. PMID: 34275906 Free PMC article. - The promise of neuroprotective agents in Parkinson's disease.
Seidl SE, Potashkin JA. Seidl SE, et al. Front Neurol. 2011 Nov 21;2:68. doi: 10.3389/fneur.2011.00068. eCollection 2011. Front Neurol. 2011. PMID: 22125548 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources