Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c- type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN - PubMed (original) (raw)
Comparative Study
. 2001 Feb 15;166(4):2291-5.
doi: 10.4049/jimmunol.166.4.2291.
Affiliations
- PMID: 11160284
- DOI: 10.4049/jimmunol.166.4.2291
Comparative Study
Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c- type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN
N Kadowaki et al. J Immunol. 2001.
Abstract
Two classes of nucleic acids, bacterial DNA containing unmethylated CpG motifs and dsRNA in viruses, induce the production of type I IFN that contributes to the immunostimulatory effects of these microbial molecules. Thus, it is important to determine which cells produce type I IFN in response to CpG DNA and dsRNA. CD4(+)CD11c(-) type 2 dendritic cell precursors (pre-DC2) were identified as the main producers of type I IFN in human blood in response to viruses. Here we asked whether pre-DC2 also produce type I IFN in response to CpG DNA and dsRNA. Oligodeoxynucleotides containing particular palindromic CpG motifs induced pre-DC2, but not CD11c(+) blood DC or monocytes, to produce IFN-alpha. In contrast, a synthetic dsRNA, polyinosinic polycytidylic-acid, induced CD11c(+) DC, but not pre-DC2 or monocytes, to produce IFN-alphabeta. These data indicate that CpG DNA and polyinosinic-polycytidylic acid stimulate different types of cells to produce type I IFN and that it is important to select oligodeoxynucleotides containing particular CpG motifs to induce pre-DC2 to produce type I IFN, which may play a key role in the strong adjuvant effects of CpG DNA.
Similar articles
- Bacterial CpG-DNA triggers activation and maturation of human CD11c-, CD123+ dendritic cells.
Bauer M, Redecke V, Ellwart JW, Scherer B, Kremer JP, Wagner H, Lipford GB. Bauer M, et al. J Immunol. 2001 Apr 15;166(8):5000-7. doi: 10.4049/jimmunol.166.8.5000. J Immunol. 2001. PMID: 11290780 - In vitro-generated viral double-stranded RNA in contrast to polyinosinic:polycytidylic acid induces interferon-alpha in human plasmacytoid dendritic cells.
Löseke S, Grage-Griebenow E, Heine H, Wagner A, Akira S, Bauer S, Bufe A. Löseke S, et al. Scand J Immunol. 2006 Apr;63(4):264-74. doi: 10.1111/j.1365-3083.2006.01736.x. Scand J Immunol. 2006. PMID: 16623926 - CpG-DNA-induced IFN-alpha production involves p38 MAPK-dependent STAT1 phosphorylation in human plasmacytoid dendritic cell precursors.
Takauji R, Iho S, Takatsuka H, Yamamoto S, Takahashi T, Kitagawa H, Iwasaki H, Iida R, Yokochi T, Matsuki T. Takauji R, et al. J Leukoc Biol. 2002 Nov;72(5):1011-9. J Leukoc Biol. 2002. PMID: 12429724 - Natural type I interferon-producing cells as a link between innate and adaptive immunity.
Kadowaki N, Liu YJ. Kadowaki N, et al. Hum Immunol. 2002 Dec;63(12):1126-32. doi: 10.1016/s0198-8859(02)00751-6. Hum Immunol. 2002. PMID: 12480256 Review. - Origin and filiation of human plasmacytoid dendritic cells.
Brière F, Bendriss-Vermare N, Delale T, Burg S, Corbet C, Rissoan MC, Chaperot L, Plumas J, Jacob MC, Trinchieri G, Bates EE. Brière F, et al. Hum Immunol. 2002 Dec;63(12):1081-93. doi: 10.1016/s0198-8859(02)00746-2. Hum Immunol. 2002. PMID: 12480251 Review.
Cited by
- Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss.
Wang H, Divaris K, Pan B, Li X, Lim JH, Saha G, Barovic M, Giannakou D, Korostoff JM, Bing Y, Sen S, Moss K, Wu D, Beck JD, Ballantyne CM, Natarajan P, North KE, Netea MG, Chavakis T, Hajishengallis G. Wang H, et al. Cell. 2024 Jul 11;187(14):3690-3711.e19. doi: 10.1016/j.cell.2024.05.003. Epub 2024 Jun 4. Cell. 2024. PMID: 38838669 Free PMC article. - Plasmacytoid dendritic cells: A dendritic cell in disguise.
Arroyo Hornero R, Idoyaga J. Arroyo Hornero R, et al. Mol Immunol. 2023 Jul;159:38-45. doi: 10.1016/j.molimm.2023.05.007. Epub 2023 Jun 1. Mol Immunol. 2023. PMID: 37269733 Free PMC article. Review. - Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines.
McFall-Boegeman H, Huang X. McFall-Boegeman H, et al. Expert Rev Vaccines. 2022 Apr;21(4):453-469. doi: 10.1080/14760584.2022.2029415. Epub 2022 Jan 24. Expert Rev Vaccines. 2022. PMID: 35023430 Free PMC article. Review. - Approaches of the Innate Immune System to Ameliorate Adaptive Immunotherapy for B-Cell Non-Hodgkin Lymphoma in Their Microenvironment.
Watanabe T. Watanabe T. Cancers (Basel). 2021 Dec 28;14(1):141. doi: 10.3390/cancers14010141. Cancers (Basel). 2021. PMID: 35008305 Free PMC article. Review. - Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings.
Greene TT, Zuniga EI. Greene TT, et al. Viruses. 2021 Sep 15;13(9):1839. doi: 10.3390/v13091839. Viruses. 2021. PMID: 34578420 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials