Propagation of action potentials in dendrites depends on dendritic morphology - PubMed (original) (raw)
Propagation of action potentials in dendrites depends on dendritic morphology
P Vetter et al. J Neurophysiol. 2001 Feb.
Free article
Abstract
Action potential propagation links information processing in different regions of the dendritic tree. To examine the contribution of dendritic morphology to the efficacy of propagation, simulations were performed in detailed reconstructions of eight different neuronal types. With identical complements of voltage-gated channels, different dendritic morphologies exhibit distinct patterns of propagation. Remarkably, the range of backpropagation efficacies observed experimentally can be reproduced by the variations in dendritic morphology alone. Dendritic geometry also determines the extent to which modulation of channel densities can affect propagation. Thus in Purkinje cells and dopamine neurons, backpropagation is relatively insensitive to changes in channel densities, whereas in pyramidal cells, backpropagation can be modulated over a wide range. We also demonstrate that forward propagation of dendritically initiated action potentials is influenced by morphology in a similar manner. We show that these functional consequences of the differences in dendritic geometries can be explained quantitatively using simple anatomical measures of dendritic branching patterns, which are captured in a reduced model of dendritic geometry. These findings indicate that differences in dendritic geometry act in concert with differences in voltage-gated channel density and kinetics to generate the diversity in dendritic action potential propagation observed between neurons. They also suggest that changes in dendritic geometry during development and plasticity will critically affect propagation. By determining the spatial pattern of action potential signaling, dendritic morphology thus helps to define the size and interdependence of functional compartments in the neuron.
Similar articles
- Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites.
Golding NL, Kath WL, Spruston N. Golding NL, et al. J Neurophysiol. 2001 Dec;86(6):2998-3010. doi: 10.1152/jn.2001.86.6.2998. J Neurophysiol. 2001. PMID: 11731556 - Role of dendritic spines in action potential backpropagation: a numerical simulation study.
Tsay D, Yuste R. Tsay D, et al. J Neurophysiol. 2002 Nov;88(5):2834-45. doi: 10.1152/jn.00781.2001. J Neurophysiol. 2002. PMID: 12424316 - Roles of IA and morphology in action potential propagation in CA1 pyramidal cell dendrites.
Acker CD, White JA. Acker CD, et al. J Comput Neurosci. 2007 Oct;23(2):201-16. doi: 10.1007/s10827-007-0028-8. Epub 2007 Apr 20. J Comput Neurosci. 2007. PMID: 17447129 - How voltage-gated ion channels alter the functional properties of ganglion and amacrine cell dendrites.
Miller RF, Stenback K, Henderson D, Sikora M. Miller RF, et al. Arch Ital Biol. 2002 Oct;140(4):347-59. Arch Ital Biol. 2002. PMID: 12228988 Review. - Control of Na+ spike backpropagation by intracellular signaling in the pyramidal neuron dendrites.
Tsubokawa H. Tsubokawa H. Mol Neurobiol. 2000 Aug-Dec;22(1-3):129-41. doi: 10.1385/MN:22:1-3:129. Mol Neurobiol. 2000. PMID: 11414276 Review.
Cited by
- Modeling Neurotransmission: Computational Tools to Investigate Neurological Disorders.
Gandolfi D, Boiani GM, Bigiani A, Mapelli J. Gandolfi D, et al. Int J Mol Sci. 2021 Apr 27;22(9):4565. doi: 10.3390/ijms22094565. Int J Mol Sci. 2021. PMID: 33925434 Free PMC article. Review. - Hydrocephalus compacted cortex and hippocampus and altered their output neurons in association with spatial learning and memory deficits in rats.
Chen LJ, Wang YJ, Chen JR, Tseng GF. Chen LJ, et al. Brain Pathol. 2017 Jul;27(4):419-436. doi: 10.1111/bpa.12414. Epub 2016 Aug 15. Brain Pathol. 2017. PMID: 27411167 Free PMC article. - The influence of phospho-τ on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease.
Merino-Serrais P, Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Rábano A, Avila J, DeFelipe J. Merino-Serrais P, et al. Brain. 2013 Jun;136(Pt 6):1913-28. doi: 10.1093/brain/awt088. Epub 2013 May 28. Brain. 2013. PMID: 23715095 Free PMC article. - Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons.
Blythe SN, Wokosin D, Atherton JF, Bevan MD. Blythe SN, et al. J Neurosci. 2009 Dec 9;29(49):15531-41. doi: 10.1523/JNEUROSCI.2961-09.2009. J Neurosci. 2009. PMID: 20007477 Free PMC article. - Anatomical and electrophysiological comparison of CA1 pyramidal neurons of the rat and mouse.
Routh BN, Johnston D, Harris K, Chitwood RA. Routh BN, et al. J Neurophysiol. 2009 Oct;102(4):2288-302. doi: 10.1152/jn.00082.2009. Epub 2009 Aug 12. J Neurophysiol. 2009. PMID: 19675296 Free PMC article.