Input-dependent synaptic targeting of alpha(2)-subunit-containing GABA(A) receptors in synapses of hippocampal pyramidal cells of the rat - PubMed (original) (raw)
Input-dependent synaptic targeting of alpha(2)-subunit-containing GABA(A) receptors in synapses of hippocampal pyramidal cells of the rat
G Nyíri et al. Eur J Neurosci. 2001 Feb.
Abstract
Pyramidal cells, expressing at least 14 subunits of the heteropentameric GABA(A) receptor, receive GABAergic input on their soma and proximal dendrites from basket cells, activating GABA(A) receptors and containing either parvalbumin or cholecystokinin and vasoactive intestinal polypeptide. The properties of GABA(A) receptors are determined by the subunit composition, and synaptic receptor content governs the effect of the presynaptic neuron. Using a quantitative electron microscopic immunogold technique, we tested whether the synapses formed by the two types of basket cell show a difference in the subunit composition of GABA(A) receptors. Terminals of one of the basket cells were identified by antibodies to parvalbumin. Synapses made by parvalbumin-negative terminals showed five times more immunoreactivity for the alpha(2) subunit than synapses made by parvalbumin-positive basket cells, whose synapses were frequently immunonegative. This difference is likely to be due to specific GABA(A) receptor alpha subunit composition, because neither synaptic size nor immunoreactivity for the beta(2/3) subunits, indicating total receptor content, was different in these two synapse populations. Synapses established by axo-axonic cells on axon initial segments showed an intermediate number of immunoparticles for the alpha(2) subunit compared to those made by basket cells but, due to their smaller size, the density of the alpha(2) subunit immunoreactivity was higher in synapses on the axon. Because the two basket cell types innervate the same domain of the pyramidal cell, the results indicate that pyramidal cells have mechanisms to target GABA(A) receptors, under presynaptic influence, preferentially to distinct synapses. The two basket cell types act via partially distinct GABA(A) receptor populations.
Similar articles
- Cell type- and input-specific differences in the number and subtypes of synaptic GABA(A) receptors in the hippocampus.
Klausberger T, Roberts JD, Somogyi P. Klausberger T, et al. J Neurosci. 2002 Apr 1;22(7):2513-21. doi: 10.1523/JNEUROSCI.22-07-02513.2002. J Neurosci. 2002. PMID: 11923416 Free PMC article. - The gamma 2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the alpha 1 and beta 2/3 subunits in hippocampus, cerebellum and globus pallidus.
Somogyi P, Fritschy JM, Benke D, Roberts JD, Sieghart W. Somogyi P, et al. Neuropharmacology. 1996;35(9-10):1425-44. doi: 10.1016/s0028-3908(96)00086-x. Neuropharmacology. 1996. PMID: 9014159 - Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex.
Kawaguchi Y, Kubota Y. Kawaguchi Y, et al. Neuroscience. 1998 Aug;85(3):677-701. doi: 10.1016/s0306-4522(97)00685-4. Neuroscience. 1998. PMID: 9639265 - Fine structure and synaptic connections of identified neurons in the rat fascia dentata.
Lübbers K, Frotscher M. Lübbers K, et al. Anat Embryol (Berl). 1987;177(1):1-14. doi: 10.1007/BF00325285. Anat Embryol (Berl). 1987. PMID: 2830808 Review. - Structure and subunit composition of GABA(A) receptors.
Sieghart W, Fuchs K, Tretter V, Ebert V, Jechlinger M, Höger H, Adamiker D. Sieghart W, et al. Neurochem Int. 1999 May;34(5):379-85. doi: 10.1016/s0197-0186(99)00045-5. Neurochem Int. 1999. PMID: 10397365 Review.
Cited by
- Hilar mossy cell circuitry controlling dentate granule cell excitability.
Jinde S, Zsiros V, Nakazawa K. Jinde S, et al. Front Neural Circuits. 2013 Feb 12;7:14. doi: 10.3389/fncir.2013.00014. eCollection 2013. Front Neural Circuits. 2013. PMID: 23407806 Free PMC article. Review. - Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells.
Früh S, Romanos J, Panzanelli P, Bürgisser D, Tyagarajan SK, Campbell KP, Santello M, Fritschy JM. Früh S, et al. J Neurosci. 2016 Oct 5;36(40):10296-10313. doi: 10.1523/JNEUROSCI.1823-16.2016. J Neurosci. 2016. PMID: 27707967 Free PMC article. - GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon.
Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M, Zhang X, Costa E. Guidotti A, et al. Psychopharmacology (Berl). 2005 Jul;180(2):191-205. doi: 10.1007/s00213-005-2212-8. Epub 2005 Apr 28. Psychopharmacology (Berl). 2005. PMID: 15864560 Review. - Presynaptic frequency- and pattern-dependent filtering.
Thomson AM. Thomson AM. J Comput Neurosci. 2003 Sep-Oct;15(2):159-202. doi: 10.1023/a:1025812808362. J Comput Neurosci. 2003. PMID: 14512746 Review. - Inhibitory Synapse Formation at the Axon Initial Segment.
Nathanson AJ, Davies PA, Moss SJ. Nathanson AJ, et al. Front Mol Neurosci. 2019 Nov 5;12:266. doi: 10.3389/fnmol.2019.00266. eCollection 2019. Front Mol Neurosci. 2019. PMID: 31749683 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources