TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast - PubMed (original) (raw)
TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
J Wu et al. Mol Cell. 2001 Jan.
Free article
Abstract
TUP1 is recruited to and represses genes that regulate mating, glucose and oxygen use, stress response, and DNA damage. It is shown here that disruption of either TUP1 or histone deacetylase HDA1 causes histone H3/H2B--specific hyperacetylation next to the TUP1 binding site at the stress-responsive ENA1 promoter. It is also shown that TUP1 interacts with HDA1 in vitro. These data indicate that TUP1 mediates localized histone deacetylation through HDA1. Interestingly, RPD3 deacetylates the ENA1 coding region, and both deacetylases contribute to ENA1 repression. However, epistasis analysis argues that only HDA1 and TUP1 are likely to function in the same pathway. These data define gene and histone targets of HDA1 and illustrate the role of histone deacetylation in TUP1 repression.
Similar articles
- Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae.
Green SR, Johnson AD. Green SR, et al. Mol Biol Cell. 2004 Sep;15(9):4191-202. doi: 10.1091/mbc.e04-05-0412. Epub 2004 Jul 7. Mol Biol Cell. 2004. PMID: 15240822 Free PMC article. - Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae.
Zhang Z, Reese JC. Zhang Z, et al. J Biol Chem. 2004 Sep 17;279(38):39240-50. doi: 10.1074/jbc.M407159200. Epub 2004 Jul 14. J Biol Chem. 2004. PMID: 15254041 - Ssn6-Tup1 interacts with class I histone deacetylases required for repression.
Watson AD, Edmondson DG, Bone JR, Mukai Y, Yu Y, Du W, Stillman DJ, Roth SY. Watson AD, et al. Genes Dev. 2000 Nov 1;14(21):2737-44. doi: 10.1101/gad.829100. Genes Dev. 2000. PMID: 11069890 Free PMC article. - Histone deacetylase: a regulator of transcription.
Wolffe AP. Wolffe AP. Science. 1996 Apr 19;272(5260):371-2. doi: 10.1126/science.272.5260.371. Science. 1996. PMID: 8602525 Review. No abstract available. - Transcriptional repression by Tup1-Ssn6.
Malavé TM, Dent SY. Malavé TM, et al. Biochem Cell Biol. 2006 Aug;84(4):437-43. doi: 10.1139/o06-073. Biochem Cell Biol. 2006. PMID: 16936817 Review.
Cited by
- Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA.
Ólafsson G, Thorpe PH. Ólafsson G, et al. PLoS Genet. 2020 Aug 18;16(8):e1008990. doi: 10.1371/journal.pgen.1008990. eCollection 2020 Aug. PLoS Genet. 2020. PMID: 32810142 Free PMC article. - Gene repression in S. cerevisiae-looking beyond Sir-dependent gene silencing.
Sauty SM, Shaban K, Yankulov K. Sauty SM, et al. Curr Genet. 2021 Feb;67(1):3-17. doi: 10.1007/s00294-020-01114-7. Epub 2020 Oct 10. Curr Genet. 2021. PMID: 33037902 Review. - Functional characterization and comparative analysis of gene repression-mediating domains interacting with yeast pleiotropic corepressors Sin3, Cyc8 and Tup1.
Lettow J, Kliewe F, Aref R, Schüller HJ. Lettow J, et al. Curr Genet. 2023 Jun;69(2-3):127-139. doi: 10.1007/s00294-023-01262-6. Epub 2023 Mar 1. Curr Genet. 2023. PMID: 36854981 Free PMC article. - Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation.
Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K. Ng HH, et al. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1820-5. doi: 10.1073/pnas.0437846100. Epub 2003 Feb 6. Proc Natl Acad Sci U S A. 2003. PMID: 12574507 Free PMC article. - Regulated repression governs the cell fate promoter controlling yeast meiosis.
Tam J, van Werven FJ. Tam J, et al. Nat Commun. 2020 May 8;11(1):2271. doi: 10.1038/s41467-020-16107-w. Nat Commun. 2020. PMID: 32385261 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases