Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator - PubMed (original) (raw)
Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator
W Hu et al. Biochem J. 2001.
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent protein kinase (PKA)-activated chloride channel that is localized to the plasma membrane and endosomal compartment. Endosomal targeting of CFTR is attributed to the Tyr(1424)-based internalization signal, identified in the C-terminal tail of the channel. Mutation of the Tyr(1424) residue could partly inhibit the endocytosis of CFTR and its association with the adapter protein AP-2. To reveal additional endosomal targeting signals, site-directed mutagenesis of both a chimaera, composed of a truncated form of interleukin 2 receptor alpha chain (TacT) and the C-terminal tail of CFTR (Ct), and the full-length CFTR was performed. Morphological and functional assays revealed the presence of multiple internalization motifs at the C-terminus, consisting of a phenylalanine-based motif (Phe(1413)) and a bipartite endocytic signal, comprising a tyrosine (Tyr(1424)) and a di-Leu-based (Leu(1430)-Leu) motif. Whereas the replacement of any one of the three internalization motifs with alanine prevented the endocytosis of the TacT-Ct chimaera, mutagenesis of Phe(1413)-Leu impaired the biosynthetic processing of CFTR, indicating that Phe(1413) is indispensable for the native structure of CFTR. In contrast, replacement of Leu(1430)-Leu- and Tyr(1424)-based signals with alanine increased the cell-surface density of both the chimaeras and CFTR in an additive manner. These results suggest that the internalization of CFTR is regulated by multiple endocytic sorting signals.
Similar articles
- Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal.
Prince LS, Peter K, Hatton SR, Zaliauskiene L, Cotlin LF, Clancy JP, Marchase RB, Collawn JF. Prince LS, et al. J Biol Chem. 1999 Feb 5;274(6):3602-9. doi: 10.1074/jbc.274.6.3602. J Biol Chem. 1999. PMID: 9920908 - Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation.
Lukacs GL, Segal G, Kartner N, Grinstein S, Zhang F. Lukacs GL, et al. Biochem J. 1997 Dec 1;328 ( Pt 2)(Pt 2):353-61. doi: 10.1042/bj3280353. Biochem J. 1997. PMID: 9371688 Free PMC article. - The carboxyl terminus of the cystic fibrosis transmembrane conductance regulator binds to AP-2 clathrin adaptors.
Weixel KM, Bradbury NA. Weixel KM, et al. J Biol Chem. 2000 Feb 4;275(5):3655-60. doi: 10.1074/jbc.275.5.3655. J Biol Chem. 2000. PMID: 10652362 - Ablation of internalization signals in the carboxyl-terminal tail of the cystic fibrosis transmembrane conductance regulator enhances cell surface expression.
Peter K, Varga K, Bebok Z, McNicholas-Bevensee CM, Schwiebert L, Sorscher EJ, Schwiebert EM, Collawn JF. Peter K, et al. J Biol Chem. 2002 Dec 20;277(51):49952-7. doi: 10.1074/jbc.M209275200. Epub 2002 Oct 9. J Biol Chem. 2002. PMID: 12376531 - Small peptide recognition sequence for intracellular sorting.
Pandey KN. Pandey KN. Curr Opin Biotechnol. 2010 Oct;21(5):611-20. doi: 10.1016/j.copbio.2010.08.007. Curr Opin Biotechnol. 2010. PMID: 20817434 Free PMC article. Review.
Cited by
- Endocytic trafficking routes of wild type and DeltaF508 cystic fibrosis transmembrane conductance regulator.
Gentzsch M, Chang XB, Cui L, Wu Y, Ozols VV, Choudhury A, Pagano RE, Riordan JR. Gentzsch M, et al. Mol Biol Cell. 2004 Jun;15(6):2684-96. doi: 10.1091/mbc.e04-03-0176. Epub 2004 Apr 9. Mol Biol Cell. 2004. PMID: 15075371 Free PMC article. - A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction.
Sharma N, LaRusch J, Sosnay PR, Gottschalk LB, Lopez AP, Pellicore MJ, Evans T, Davis E, Atalar M, Na CH, Rosson GD, Belchis D, Milewski M, Pandey A, Cutting GR. Sharma N, et al. Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1170-L1182. doi: 10.1152/ajplung.00363.2016. Epub 2016 Oct 28. Am J Physiol Lung Cell Mol Physiol. 2016. PMID: 27793802 Free PMC article. - COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments.
Benharouga M, Haardt M, Kartner N, Lukacs GL. Benharouga M, et al. J Cell Biol. 2001 May 28;153(5):957-70. doi: 10.1083/jcb.153.5.957. J Cell Biol. 2001. PMID: 11381082 Free PMC article. - Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator.
Fu L, Rab A, Tang LP, Rowe SM, Bebok Z, Collawn JF. Fu L, et al. Biochem J. 2012 Jan 15;441(2):633-43. doi: 10.1042/BJ20111566. Biochem J. 2012. PMID: 21995445 Free PMC article. - Endocytic trafficking of CFTR in health and disease.
Ameen N, Silvis M, Bradbury NA. Ameen N, et al. J Cyst Fibros. 2007 Jan;6(1):1-14. doi: 10.1016/j.jcf.2006.09.002. Epub 2006 Nov 13. J Cyst Fibros. 2007. PMID: 17098482 Free PMC article. Review.
References
- Nature. 1991 Aug 15;352(6336):628-31 - PubMed
- Cell. 1983 May;33(1):273-85 - PubMed
- J Biol Chem. 1994 Mar 18;269(11):8296-302 - PubMed
- J Cell Sci. 1994 Jul;107 ( Pt 7):2021-32 - PubMed
- Am J Physiol Cell Physiol. 2000 Aug;279(2):C375-82 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials