PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2) - PubMed (original) (raw)
PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2)
R Mamillapalli et al. Curr Biol. 2001.
Free article
Abstract
The PTEN tumor suppressor acts as a phosphatase for phosphatidylinositol-3,4,5-trisphosphate (PIP3) [1, 2]. We have shown previously that PTEN negatively controls the G1/S cell cycle transition and regulates the levels of p27(KIP1), a CDK inhibitor [3, 4]. Recently, we and others have identified an ubiquitin E3 ligase, the SCF(SKP2) complex, that mediates p27 ubiquitin-dependent proteolysis [5-7]. Here we report that PTEN and the PI 3-kinase pathway regulate p27 protein stability. PTEN-deficiency in mouse embryonic stem (ES) cells causes a decrease of p27 levels with concomitant increase of SKP2, a key component of the SCF(SKP2) complex. Conversely, in human glioblastoma cells, ectopic PTEN expression leads to p27 accumulation, which is accompanied by a reduction of SKP2. We found that ectopic expression of SKP2 alone is sufficient to reverse PTEN-induced p27 accumulation, restore the kinase activity of cyclin E/CDK2, and partially overcome the PTEN-induced G1 cell cycle arrest. Consistently, recombinant SCF(SKP2) complex or SKP2 protein alone can rescue the defect in p27 ubiquitination in extracts prepared from cells treated with a PI 3-kinase inhibitor. Our findings suggest that SKP2 functions as a critical component in the PTEN/PI 3-kinase pathway for the regulation of p27(KIP1) and cell proliferation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous