Neuronal KCNQ potassium channels: physiology and role in disease - PubMed (original) (raw)
Review
Neuronal KCNQ potassium channels: physiology and role in disease
T J Jentsch. Nat Rev Neurosci. 2000 Oct.
Abstract
Humans have over 70 potassium channel genes, but only some of these have been linked to disease. In this respect, the KCNQ family of potassium channels is exceptional: mutations in four out of five KCNQ genes underlie diseases including cardiac arrhythmias, deafness and epilepsy. These disorders illustrate the different physiological functions of KCNQ channels, and provide a model for the study of the 'safety margin' that separates normal from pathological levels of channel expression. In addition, several KCNQ isoforms can associate to form heteromeric channels that underlie the M-current, an important regulator of neuronal excitability.
Similar articles
- M-channels: neurological diseases, neuromodulation, and drug development.
Cooper EC, Jan LY. Cooper EC, et al. Arch Neurol. 2003 Apr;60(4):496-500. doi: 10.1001/archneur.60.4.496. Arch Neurol. 2003. PMID: 12707061 Review. - KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum.
Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, Anderson VE, Sanguinetti MC, Leppert MF; BFNC Physician Consortium. Singh NA, et al. Brain. 2003 Dec;126(Pt 12):2726-37. doi: 10.1093/brain/awg286. Epub 2003 Oct 8. Brain. 2003. PMID: 14534157 - Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy.
Schroeder BC, Kubisch C, Stein V, Jentsch TJ. Schroeder BC, et al. Nature. 1998 Dec 17;396(6712):687-90. doi: 10.1038/25367. Nature. 1998. PMID: 9872318 - KCNQ potassium channels: physiology, pathophysiology, and pharmacology.
Robbins J. Robbins J. Pharmacol Ther. 2001 Apr;90(1):1-19. doi: 10.1016/s0163-7258(01)00116-4. Pharmacol Ther. 2001. PMID: 11448722 Review. - Differential tetraethylammonium sensitivity of KCNQ1-4 potassium channels.
Hadley JK, Noda M, Selyanko AA, Wood IC, Abogadie FC, Brown DA. Hadley JK, et al. Br J Pharmacol. 2000 Feb;129(3):413-5. doi: 10.1038/sj.bjp.0703086. Br J Pharmacol. 2000. PMID: 10711337 Free PMC article.
Cited by
- Flexible Stoichiometry: Implications for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders.
Springer K, Varghese N, Tzingounis AV. Springer K, et al. Dev Neurosci. 2021;43(3-4):191-200. doi: 10.1159/000515495. Epub 2021 Apr 1. Dev Neurosci. 2021. PMID: 33794528 Free PMC article. Review. - Potassium Channels in Epilepsy.
Köhling R, Wolfart J. Köhling R, et al. Cold Spring Harb Perspect Med. 2016 May 2;6(5):a022871. doi: 10.1101/cshperspect.a022871. Cold Spring Harb Perspect Med. 2016. PMID: 27141079 Free PMC article. Review. - Modulation of Kv7 channels and excitability in the brain.
Greene DL, Hoshi N. Greene DL, et al. Cell Mol Life Sci. 2017 Feb;74(3):495-508. doi: 10.1007/s00018-016-2359-y. Epub 2016 Sep 19. Cell Mol Life Sci. 2017. PMID: 27645822 Free PMC article. Review. - Clinical utility, safety, and tolerability of ezogabine (retigabine) in the treatment of epilepsy.
Ciliberto MA, Weisenberg JL, Wong M. Ciliberto MA, et al. Drug Healthc Patient Saf. 2012;4:81-6. doi: 10.2147/DHPS.S28814. Epub 2012 Jul 26. Drug Healthc Patient Saf. 2012. PMID: 22888276 Free PMC article. - Inactivation in the potassium channel KcsA.
Xu Y, McDermott AE. Xu Y, et al. J Struct Biol X. 2019 Jun 12;3:100009. doi: 10.1016/j.yjsbx.2019.100009. eCollection 2019 Jul-Sep. J Struct Biol X. 2019. PMID: 32647814 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources