Reverse vaccinology, a genome-based approach to vaccine development - PubMed (original) (raw)
Reverse vaccinology, a genome-based approach to vaccine development
R Rappuoli. Vaccine. 2001.
Abstract
The conventional approach to vaccine development requires cultivation of the pathogenic microorganism and its dissection using biochemical, immunological, and microbiological methods in order to identify the components important for immunity. This method, while successful in many cases, failed to provide a solution for many of those pathogens for which a vaccine is not yet available. Today, the possibility of using genomic information allows us to study vaccine development in silico, without the need of cultivating the pathogen. This approach, which we have named 'reverse vaccinology', reduces the time required for the identification of candidate vaccines and provides new solutions for those vaccines which have been difficult or impossible to develop. The potential of this new approach is illustrated by the use of reverse vaccinology for the development of a vaccine against serogroup B meningococcus. The application of reverse vaccinology to other fields, including viral vaccines is discussed.
Similar articles
- Two years into reverse vaccinology.
Adu-Bobie J, Capecchi B, Serruto D, Rappuoli R, Pizza M. Adu-Bobie J, et al. Vaccine. 2003 Jan 30;21(7-8):605-10. doi: 10.1016/s0264-410x(02)00566-2. Vaccine. 2003. PMID: 12531326 - Reverse vaccinology: a genome-based approach for vaccine development.
Masignani V, Rappuoli R, Pizza M. Masignani V, et al. Expert Opin Biol Ther. 2002 Dec;2(8):895-905. doi: 10.1517/14712598.2.8.895. Expert Opin Biol Ther. 2002. PMID: 12517268 Review. - The genome revolution in vaccine research.
Capecchi B, Serruto D, Adu-Bobie J, Rappuoli R, Pizza M. Capecchi B, et al. Curr Issues Mol Biol. 2004 Jan;6(1):17-27. Curr Issues Mol Biol. 2004. PMID: 14632256 Review. - Reverse vaccinology.
Mora M, Veggi D, Santini L, Pizza M, Rappuoli R. Mora M, et al. Drug Discov Today. 2003 May 15;8(10):459-64. doi: 10.1016/s1359-6446(03)02689-8. Drug Discov Today. 2003. PMID: 12801798 Review. - Bexsero® chronicle.
Vernikos G, Medini D. Vernikos G, et al. Pathog Glob Health. 2014 Oct;108(7):305-16. doi: 10.1179/2047773214Y.0000000162. Pathog Glob Health. 2014. PMID: 25417906 Free PMC article. Review.
Cited by
- An Improved Approach to Identify Bacterial Pathogens to Human in Environmental Metagenome.
Yang J, Howe A, Lee J, Yoo K, Park J. Yang J, et al. J Microbiol Biotechnol. 2020 Sep 28;30(9):1335-1342. doi: 10.4014/jmb.2005.05033. J Microbiol Biotechnol. 2020. PMID: 32627750 Free PMC article. - Protein Crystallography in Vaccine Research and Development.
Malito E, Carfi A, Bottomley MJ. Malito E, et al. Int J Mol Sci. 2015 Jun 9;16(6):13106-40. doi: 10.3390/ijms160613106. Int J Mol Sci. 2015. PMID: 26068237 Free PMC article. Review. - Exploiting the power of OMICS approaches to produce E. coli O157 vaccines.
Kalita A, Kalita M, Torres AG. Kalita A, et al. Gut Microbes. 2014;5(6):770-4. doi: 10.4161/19490976.2014.983769. Gut Microbes. 2014. PMID: 25621619 Free PMC article. - Compilation of parasitic immunogenic proteins from 30 years of published research using machine learning and natural language processing.
Goodswen SJ, Kennedy PJ, Ellis JT. Goodswen SJ, et al. Sci Rep. 2022 Jun 20;12(1):10349. doi: 10.1038/s41598-022-13790-1. Sci Rep. 2022. PMID: 35725870 Free PMC article. - Highlighting Medicinal Chemistry in Italy Special Issue.
Botta M. Botta M. ACS Med Chem Lett. 2019 Apr 11;10(4):395. doi: 10.1021/acsmedchemlett.9b00137. eCollection 2019 Apr 11. ACS Med Chem Lett. 2019. PMID: 30996768 Free PMC article. No abstract available.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical