Transcription factors in mouse lung development and function - PubMed (original) (raw)
Review
Transcription factors in mouse lung development and function
R H Costa et al. Am J Physiol Lung Cell Mol Physiol. 2001 May.
Free article
Abstract
Development of the mouse lung initiates on day 9.5 postcoitum from the laryngotracheal groove and involves mesenchymal-epithelial interactions, in particular, those between the splanchnic mesoderm and epithelial cells (derived from foregut endoderm) that induce cellular proliferation, migration, and differentiation, resulting in branching morphogenesis. This developmental process mediates formation of the pulmonary bronchiole tree and integrates a terminal alveolar region with an extensive endothelial capillary bed, which facilitates efficient gas exchange with the circulatory system. The major function of the mesenchymal-epithelial signaling is to potentiate the activity or expression of cell type-specific transcription factors in the developing lung, which, in turn, cooperatively bind to distinct promoter regions and activate target gene expression. In this review, we focus on the role of transcription factors in lung morphogenesis and the maintenance of differentiated gene expression. These lung transcription factors include forkhead box A2 [also known as hepatocyte nuclear factor (HNF)-3beta], HNF-3/forkhead homolog (HFH)-8 [also known as FoxF1 or forkhead-related activator-1], HNF-3/forkhead homolog-4 (also known as FoxJ1), thyroid transcription factor-1 (Nkx2.1), and homeodomain box A5 transcription factors, the zinc finger Gli (mouse homologs of the Drosophila cubitus interruptus) and GATA transcription factors, and the basic helix-loop-helix Pod1 transcription factor. We summarize the phenotypes of transgenic and knockout mouse models, which define important functions of these transcription factors in cellular differentiation and lung branching morphogenesis.
Similar articles
- HNF-3/forkhead homologue-4 influences lung morphogenesis and respiratory epithelial cell differentiation in vivo.
Tichelaar JW, Lim L, Costa RH, Whitsett JA. Tichelaar JW, et al. Dev Biol. 1999 Sep 15;213(2):405-17. doi: 10.1006/dbio.1999.9380. Dev Biol. 1999. PMID: 10479457 - Hepatocyte nuclear factor-3beta limits cellular diversity in the developing respiratory epithelium and alters lung morphogenesis in vivo.
Zhou L, Dey CR, Wert SE, Yan C, Costa RH, Whitsett JA. Zhou L, et al. Dev Dyn. 1997 Nov;210(3):305-14. doi: 10.1002/(SICI)1097-0177(199711)210:3<305::AID-AJA10>3.0.CO;2-9. Dev Dyn. 1997. PMID: 9389455 - Growth factors in lung development.
Kumar VH, Lakshminrusimha S, El Abiad MT, Chess PR, Ryan RM. Kumar VH, et al. Adv Clin Chem. 2005;40:261-316. doi: 10.1016/s0065-2423(05)40007-4. Adv Clin Chem. 2005. PMID: 16355925 Review. - Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues.
Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG, Roebuck KA, Costa RH. Ye H, et al. Mol Cell Biol. 1997 Mar;17(3):1626-41. doi: 10.1128/MCB.17.3.1626. Mol Cell Biol. 1997. PMID: 9032290 Free PMC article. - Commitment and differentiation of lung cell lineages.
Warburton D, Wuenschell C, Flores-Delgado G, Anderson K. Warburton D, et al. Biochem Cell Biol. 1998;76(6):971-95. Biochem Cell Biol. 1998. PMID: 10392710 Review.
Cited by
- The molecular consequences of FOXF1 missense mutations associated with alveolar capillary dysplasia with misalignment of pulmonary veins.
Edel GG, van Kempen M, Munck AB, Huisman CN, Naalden CAP, Brouwer RWW, Koornneef S, van IJcken WFJ, Wijnen RMH, Rottier RJ. Edel GG, et al. J Biomed Sci. 2024 Nov 4;31(1):100. doi: 10.1186/s12929-024-01088-5. J Biomed Sci. 2024. PMID: 39497128 Free PMC article. - Mechanics of Lung Development.
Baguma-Nibasheka M, Kablar B. Baguma-Nibasheka M, et al. Adv Anat Embryol Cell Biol. 2023;236:131-150. doi: 10.1007/978-3-031-38215-4_6. Adv Anat Embryol Cell Biol. 2023. PMID: 37955774 - Decreased Expression of Pulmonary Homeobox NKX2.1 and Surfactant Protein C in Developing Lungs That Over-Express Receptors for Advanced Glycation End-Products (RAGE).
Clarke DM, Curtis KL, Wendt RA, Stapley BM, Clark ET, Beckett N, Campbell KM, Arroyo JA, Reynolds PR. Clarke DM, et al. J Dev Biol. 2023 Jul 15;11(3):33. doi: 10.3390/jdb11030033. J Dev Biol. 2023. PMID: 37489334 Free PMC article. - Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis.
Ikonomou L, Yampolskaya M, Mehta P. Ikonomou L, et al. Adv Exp Med Biol. 2023;1413:49-70. doi: 10.1007/978-3-031-26625-6_4. Adv Exp Med Biol. 2023. PMID: 37195526 Free PMC article. - Counteracting lineage-specific transcription factor network finely tunes lung adeno-to-squamous transdifferentiation through remodeling tumor immune microenvironment.
Tang S, Xue Y, Qin Z, Fang Z, Sun Y, Yuan C, Pan Y, Zhao Y, Tong X, Zhang J, Huang H, Chen Y, Hu L, Huang D, Wang R, Zou W, Li Y, Thomas RK, Ventura A, Wong KK, Chen H, Chen L, Ji H. Tang S, et al. Natl Sci Rev. 2023 Feb 14;10(4):nwad028. doi: 10.1093/nsr/nwad028. eCollection 2023 Apr. Natl Sci Rev. 2023. PMID: 37051524 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases