Myosin motors: missing structures and hidden springs - PubMed (original) (raw)
Review
Myosin motors: missing structures and hidden springs
A Houdusse et al. Curr Opin Struct Biol. 2001 Apr.
Abstract
High-resolution structures of the motor domain of myosin II and lower resolution actin-myosin structures have led to the "swinging lever arm" model for myosin force generation. The available kinetic data are not all easily reconciled with this model and understanding the final details of the myosin motor mechanism must await actin-myosin co-crystals. The observation that myosin can populate multiple states in the absence of actin has nonetheless led to significant insights. The currently known myosin structures correspond to defined kinetic states that bind weakly (K(d)>microM) to actin. It is possible that the myosin lever arm could complete its swing before strong binding to actin and force generation--a process that would correspond, in the absence of load, to a Brownian ratchet. We further suggest that, under load, internal springs within the myosin head could decouple force generation and lever arm movement.
Similar articles
- Motor function and regulation of myosin X.
Homma K, Saito J, Ikebe R, Ikebe M. Homma K, et al. J Biol Chem. 2001 Sep 7;276(36):34348-54. doi: 10.1074/jbc.M104785200. Epub 2001 Jul 16. J Biol Chem. 2001. PMID: 11457842 - Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
Muhlrad A, Peyser YM, Nili M, Ajtai K, Reisler E, Burghardt TP. Muhlrad A, et al. Biophys J. 2003 Feb;84(2 Pt 1):1047-56. doi: 10.1016/S0006-3495(03)74921-2. Biophys J. 2003. PMID: 12547786 Free PMC article. - A large step for myosin.
Yanagida T, Iwane AH. Yanagida T, et al. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9357-9. doi: 10.1073/pnas.97.17.9357. Proc Natl Acad Sci U S A. 2000. PMID: 10944206 Free PMC article. No abstract available. - Molecular mechanism of actomyosin-based motility.
Geeves MA, Fedorov R, Manstein DJ. Geeves MA, et al. Cell Mol Life Sci. 2005 Jul;62(13):1462-77. doi: 10.1007/s00018-005-5015-5. Cell Mol Life Sci. 2005. PMID: 15924264 Free PMC article. Review. - How Myosin Generates Force on Actin Filaments.
Houdusse A, Sweeney HL. Houdusse A, et al. Trends Biochem Sci. 2016 Dec;41(12):989-997. doi: 10.1016/j.tibs.2016.09.006. Epub 2016 Oct 4. Trends Biochem Sci. 2016. PMID: 27717739 Free PMC article. Review.
Cited by
- Post-translational modifications of vertebrate striated muscle myosin heavy chains.
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Morales PN, et al. Cytoskeleton (Hoboken). 2024 Apr 8:10.1002/cm.21857. doi: 10.1002/cm.21857. Online ahead of print. Cytoskeleton (Hoboken). 2024. PMID: 38587113 Review. - A model for the chemomechanical coupling of myosin-V molecular motors.
Xie P. Xie P. RSC Adv. 2019 Aug 27;9(46):26734-26747. doi: 10.1039/c9ra05072h. eCollection 2019 Aug 23. RSC Adv. 2019. PMID: 35528596 Free PMC article. - Cardiac myosin binding protein-C phosphorylation accelerates β-cardiac myosin detachment rate in mouse myocardium.
Tanner BCW, Previs MJ, Wang Y, Robbins J, Palmer BM. Tanner BCW, et al. Am J Physiol Heart Circ Physiol. 2021 May 1;320(5):H1822-H1835. doi: 10.1152/ajpheart.00673.2020. Epub 2021 Mar 5. Am J Physiol Heart Circ Physiol. 2021. PMID: 33666504 Free PMC article. - Electrostatic interactions in the SH1-SH2 helix of human cardiac myosin modulate the time of strong actomyosin binding.
Gargey A, Iragavarapu SB, Grdzelishvili AV, Nesmelov YE. Gargey A, et al. J Muscle Res Cell Motil. 2021 Jun;42(2):137-147. doi: 10.1007/s10974-020-09588-1. Epub 2020 Sep 14. J Muscle Res Cell Motil. 2021. PMID: 32929610 Free PMC article. - How to Build a Biological Machine Using Engineering Materials and Methods.
Ellery A. Ellery A. Biomimetics (Basel). 2020 Jul 26;5(3):35. doi: 10.3390/biomimetics5030035. Biomimetics (Basel). 2020. PMID: 32722540 Free PMC article.