Epitope mapping of antibodies to the C-terminal region of the integrin beta 2 subunit reveals regions that become exposed upon receptor activation - PubMed (original) (raw)
Comparative Study
. 2001 May 1;166(9):5629-37.
doi: 10.4049/jimmunol.166.9.5629.
Affiliations
- PMID: 11313403
- DOI: 10.4049/jimmunol.166.9.5629
Comparative Study
Epitope mapping of antibodies to the C-terminal region of the integrin beta 2 subunit reveals regions that become exposed upon receptor activation
C Lu et al. J Immunol. 2001.
Abstract
The cysteine-rich repeats in the stalk region of integrin beta subunits appear to convey signals impinging on the cytoplasmic domains to the ligand-binding headpiece of integrins. We have examined the functional properties of mAbs to the stalk region and mapped their epitopes, providing a structure-function map. Among a panel of 14 mAbs to the beta(2) subunit, one, KIM127, preferentially bound to alpha(L)beta(2) that was activated by mutations in the cytoplasmic domains, and by Mn(2+). KIM127 also bound preferentially to the free beta(2) subunit compared with resting alpha(L)beta(2). Activating beta(2) mutations also greatly enhanced binding of KIM127 to integrins alpha(M)beta(2) and alpha(X)beta(2). Thus, the KIM127 epitope is shielded by the alpha subunit, and becomes reexposed upon receptor activation. Three other mAbs, CBR LFA-1/2, MEM48, and KIM185, activated alpha(L)beta(2) and bound equally well to resting and activated alpha(L)beta(2), differentially recognized resting alpha(M)beta(2) and alpha(X)beta(2), and bound fully to activated alpha(M)beta(2) and alpha(X)beta(2). The KIM127 epitope localizes within cysteine-rich repeat 2, to residues 504, 506, and 508. By contrast, the two activating mAbs CBR LFA-1/2 and MEM48 bind to overlapping epitopes involving residues 534, 536, 541, 543, and 546 in cysteine-rich repeat 3, and the activating mAb KIM185 maps near the end of cysteine-rich repeat 4. The nonactivating mAbs, 6.7 and CBR LFA-1/7, map more N-terminal, to subregions 344-432 and 432-487, respectively. We thus define five different beta(2) stalk subregions, mAb binding to which correlates with effect on activation, and define regions in an interface that becomes exposed upon integrin activation.
Similar articles
- The binding sites for competitive antagonistic, allosteric antagonistic, and agonistic antibodies to the I domain of integrin LFA-1.
Lu C, Shimaoka M, Salas A, Springer TA. Lu C, et al. J Immunol. 2004 Sep 15;173(6):3972-8. doi: 10.4049/jimmunol.173.6.3972. J Immunol. 2004. PMID: 15356146 - Structural and functional studies with antibodies to the integrin beta 2 subunit. A model for the I-like domain.
Huang C, Zang Q, Takagi J, Springer TA. Huang C, et al. J Biol Chem. 2000 Jul 14;275(28):21514-24. doi: 10.1074/jbc.M002286200. J Biol Chem. 2000. PMID: 10779511 - Effects of I domain deletion on the function of the beta2 integrin lymphocyte function-associated antigen-1.
Leitinger B, Hogg N. Leitinger B, et al. Mol Biol Cell. 2000 Feb;11(2):677-90. doi: 10.1091/mbc.11.2.677. Mol Biol Cell. 2000. PMID: 10679023 Free PMC article. - Structural basis of integrin-mediated signal transduction.
Takada Y, Kamata T, Irie A, Puzon-McLaughlin W, Zhang XP. Takada Y, et al. Matrix Biol. 1997 Oct;16(4):143-51. doi: 10.1016/s0945-053x(97)90002-0. Matrix Biol. 1997. PMID: 9402003 Review. - Mapping functional residues onto integrin crystal structures.
Humphries MJ, Symonds EJ, Mould AP. Humphries MJ, et al. Curr Opin Struct Biol. 2003 Apr;13(2):236-43. doi: 10.1016/s0959-440x(03)00035-6. Curr Opin Struct Biol. 2003. PMID: 12727518 Review.
Cited by
- The extracellular cyclophilin A-integrin β2 complex as a therapeutic target of viral pneumonia.
Bai X, Yang W, Zhao Y, Cao T, Lin R, Jiao P, Li H, Li H, Min J, Jia X, Zhang H, Fan W, Jia X, Bi Y, Liu W, Sun L. Bai X, et al. Mol Ther. 2024 May 1;32(5):1510-1525. doi: 10.1016/j.ymthe.2024.03.008. Epub 2024 Mar 7. Mol Ther. 2024. PMID: 38454605 - A Flow Cytometry-Based High-Throughput Technique for Screening Integrin-Inhibitory Drugs.
Cao Z, Garcia MJ, Sklar LA, Wandinger-Ness A, Fan Z. Cao Z, et al. J Vis Exp. 2024 Feb 2;(204):10.3791/64401. doi: 10.3791/64401. J Vis Exp. 2024. PMID: 38372326 - Nexinhib20 Inhibits Neutrophil Adhesion and β2 Integrin Activation by Antagonizing Rac-1-Guanosine 5'-Triphosphate Interaction.
Liu W, Cronin CG, Cao Z, Wang C, Ruan J, Pulikkot S, Hall A, Sun H, Groisman A, Chen Y, Vella AT, Hu L, Liang BT, Fan Z. Liu W, et al. J Immunol. 2022 Oct 15;209(8):1574-1585. doi: 10.4049/jimmunol.2101112. Epub 2022 Sep 7. J Immunol. 2022. PMID: 36165184 Free PMC article. - LFA1 Activation: Insights from a Single-Molecule Approach.
Kondo N, Ueda Y, Kinashi T. Kondo N, et al. Cells. 2022 May 26;11(11):1751. doi: 10.3390/cells11111751. Cells. 2022. PMID: 35681446 Free PMC article. Review. - Humanized β2 Integrin-Expressing Hoxb8 Cells Serve as Model to Study Integrin Activation.
Bromberger T, Klapproth S, Sperandio M, Moser M. Bromberger T, et al. Cells. 2022 May 3;11(9):1532. doi: 10.3390/cells11091532. Cells. 2022. PMID: 35563841 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous