Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria - PubMed (original) (raw)
Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria
J R Finnerty et al. Evol Dev. 1999 Jul-Aug.
Abstract
Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior-posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster (Brooke et al. 1998). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria (Schubert et al. 1993; Zhang and Nei 1996). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes (anthox2 and anthox6) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (= Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior-posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria.
Similar articles
- Do cnidarians have a ParaHox cluster? Analysis of synteny around a Nematostella homeobox gene cluster.
Hui JH, Holland PW, Ferrier DE. Hui JH, et al. Evol Dev. 2008 Nov-Dec;10(6):725-30. doi: 10.1111/j.1525-142X.2008.00286.x. Evol Dev. 2008. PMID: 19021743 - Early evolution of a homeobox gene: the parahox gene Gsx in the Cnidaria and the Bilateria.
Finnerty JR, Paulson D, Burton P, Pang K, Martindale MQ. Finnerty JR, et al. Evol Dev. 2003 Jul-Aug;5(4):331-45. doi: 10.1046/j.1525-142x.2003.03041.x. Evol Dev. 2003. PMID: 12823450 - Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis.
Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR. Ryan JF, et al. PLoS One. 2007 Jan 24;2(1):e153. doi: 10.1371/journal.pone.0000153. PLoS One. 2007. PMID: 17252055 Free PMC article. - Evolution of invertebrate deuterostomes and Hox/ParaHox genes.
Ikuta T. Ikuta T. Genomics Proteomics Bioinformatics. 2011 Jun;9(3):77-96. doi: 10.1016/S1672-0229(11)60011-9. Genomics Proteomics Bioinformatics. 2011. PMID: 21802045 Free PMC article. Review. - The origins of axial patterning in the metazoa: how old is bilateral symmetry?
Finnerty JR. Finnerty JR. Int J Dev Biol. 2003;47(7-8):523-9. Int J Dev Biol. 2003. PMID: 14756328 Review.
Cited by
- Regulatory evolution and the origin of the bilaterians.
Peterson KJ, Davidson EH. Peterson KJ, et al. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4430-3. doi: 10.1073/pnas.97.9.4430. Proc Natl Acad Sci U S A. 2000. PMID: 10781037 Free PMC article. Review. - Gene Loss may have Shaped the Cnidarian and Bilaterian Hox and ParaHox Complement.
Steinworth BM, Martindale MQ, Ryan JF. Steinworth BM, et al. Genome Biol Evol. 2023 Jan 4;15(1):evac172. doi: 10.1093/gbe/evac172. Genome Biol Evol. 2023. PMID: 36508343 Free PMC article. - The genetic factors of bilaterian evolution.
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. Heger P, et al. Elife. 2020 Jul 16;9:e45530. doi: 10.7554/eLife.45530. Elife. 2020. PMID: 32672535 Free PMC article. - Conservation and co-option in developmental programmes: the importance of homology relationships.
Sanetra M, Begemann G, Becker MB, Meyer A. Sanetra M, et al. Front Zool. 2005 Oct 10;2:15. doi: 10.1186/1742-9994-2-15. Front Zool. 2005. PMID: 16216118 Free PMC article. - The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis.
Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR. Ryan JF, et al. Genome Biol. 2006;7(7):R64. doi: 10.1186/gb-2006-7-7-R64. Genome Biol. 2006. PMID: 16867185 Free PMC article.