Transcriptional activation: risky business - PubMed (original) (raw)
Review
. 2001 May 1;15(9):1045-50.
doi: 10.1101/gad.896501.
Affiliations
- PMID: 11331599
- DOI: 10.1101/gad.896501
Free article
Review
Transcriptional activation: risky business
W P Tansey. Genes Dev. 2001.
Free article
Abstract
Transcriptional regulation is all about getting RNA polymerase to the right place on the gene at the right time and making sure that it is competent to conduct transcription. Traditional views of this process place most of their emphasis on the events that precede initiation of transcription. We imagine a promoter-bound transcriptional activator (or collection of activators) recruiting components of the basal transcriptional machinery to the DNA, eventually leading to the recruitment of RNA polymerase II and the onset of gene transcription. Although these events play a crucial role in regulating gene expression, they are only half the story. Correct regulation of transcription requires that polymerase not only initiates when and where it should, but that it stops initiating when no longer appropriate. But how are the signals from transcriptional activators, telling RNA polymerase to fire, terminated? Is this process governed by chance, with activators simply falling off the promoter at a certain frequency? Or is there some more direct mechanism, whereby activators are aggressively limited from uncontrolled promoter activation? A new article by suggests the latter may be true, and provides a mechanism for how a component of the basal transcription machinery can mark the activators it has encountered, sentencing them to an early death or banishing them from the nucleus. The ability of the basal transcriptional apparatus to mark activators provides an efficient way to limit activator function and ensures that continuing transcription initiation at a promoter is coupled to the continuing synthesis and activation of transcriptional activators.
Comment on
- Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase.
Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, Carr SA, Deshaies RJ. Chi Y, et al. Genes Dev. 2001 May 1;15(9):1078-92. doi: 10.1101/gad.867501. Genes Dev. 2001. PMID: 11331604 Free PMC article.
Similar articles
- Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
Conlan RS, Tzamarias D. Conlan RS, et al. J Mol Biol. 2001 Jun 22;309(5):1007-15. doi: 10.1006/jmbi.2001.4742. J Mol Biol. 2001. PMID: 11399075 - Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro.
Huh JR, Park JM, Kim M, Carlson BA, Hatfield DL, Lee BJ. Huh JR, et al. Biochem Biophys Res Commun. 1999 Mar 5;256(1):45-51. doi: 10.1006/bbrc.1999.0280. Biochem Biophys Res Commun. 1999. PMID: 10066420 - Transcriptional regulation by targeted recruitment of cyclin-dependent CDK9 kinase in vivo.
Majello B, Napolitano G, Giordano A, Lania L. Majello B, et al. Oncogene. 1999 Aug 12;18(32):4598-605. doi: 10.1038/sj.onc.1202822. Oncogene. 1999. PMID: 10467404 - Mediator and the mechanism of transcriptional activation.
Kornberg RD. Kornberg RD. Trends Biochem Sci. 2005 May;30(5):235-9. doi: 10.1016/j.tibs.2005.03.011. Trends Biochem Sci. 2005. PMID: 15896740 Review. - TAFs mediate transcriptional activation and promoter selectivity.
Verrijzer CP, Tjian R. Verrijzer CP, et al. Trends Biochem Sci. 1996 Sep;21(9):338-42. Trends Biochem Sci. 1996. PMID: 8870497 Review.
Cited by
- ERα phosphorylation at Y537 by Src triggers E6-AP-ERα binding, ERα ubiquitylation, promoter occupancy, and target gene expression.
Sun J, Zhou W, Kaliappan K, Nawaz Z, Slingerland JM. Sun J, et al. Mol Endocrinol. 2012 Sep;26(9):1567-77. doi: 10.1210/me.2012-1140. Epub 2012 Aug 3. Mol Endocrinol. 2012. PMID: 22865929 Free PMC article. - Snf1 controls the activity of adr1 through dephosphorylation of Ser230.
Ratnakumar S, Kacherovsky N, Arms E, Young ET. Ratnakumar S, et al. Genetics. 2009 Jul;182(3):735-45. doi: 10.1534/genetics.109.103432. Epub 2009 Apr 27. Genetics. 2009. PMID: 19398770 Free PMC article. - Dysregulation of CDK8 and Cyclin C in tumorigenesis.
Xu W, Ji JY. Xu W, et al. J Genet Genomics. 2011 Oct 20;38(10):439-52. doi: 10.1016/j.jgg.2011.09.002. Epub 2011 Sep 16. J Genet Genomics. 2011. PMID: 22035865 Free PMC article. Review. - Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in Neurospora.
Wang B, Zhou X, Gerber SA, Loros JJ, Dunlap JC. Wang B, et al. mBio. 2021 Jun 29;12(3):e0149321. doi: 10.1128/mBio.01493-21. Epub 2021 Jun 29. mBio. 2021. PMID: 34182778 Free PMC article. - Chromatin Association of Gcn4 Is Limited by Post-translational Modifications Triggered by its DNA-Binding in Saccharomyces cerevisiae.
Akhter A, Rosonina E. Akhter A, et al. Genetics. 2016 Dec;204(4):1433-1445. doi: 10.1534/genetics.116.194134. Epub 2016 Oct 21. Genetics. 2016. PMID: 27770033 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases