Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis - PubMed (original) (raw)
Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis
H B Wang et al. J Immunol. 2001.
Abstract
CTLA-4 appears to be a negative regulator of T cell activation and is implicated in T cell-mediated autoimmune diseases. Experimental autoimmune myasthenia gravis (EAMG), induced by immunization of C57BL/6 mice with acetylcholine receptor (AChR) in adjuvant, is an autoantibody-mediated disease model for human myasthenia gravis (MG). The production of anti-AChR Abs in MG and EAMG is T cell dependent. In the present study, we demonstrate that anti-CTLA-4 Ab treatment enhances T cell responses to AChR, increases anti-AChR Ab production, and provokes a rapid onset and severe EAMG. To address possible mechanisms underlying the enhanced autoreactive T cell responses after anti-CTLA-4 Ab treatment, mice were immunized with the immunodominant peptide alpha(146-162) representing an extracellular sequence of the ACHR: Anti-CTLA-4 Ab, but not control Ab, treatment subsequent to peptide immunization results in clinical EAMG with diversification of the autoantibody repertoire as well as enhanced T cell proliferation against not only the immunizing alpha(146-162) peptide, but also against other subdominant epitopes. Thus, treatment with anti-CTLA-4 Ab appears to induce determinant spreading, diversify the autoantibody repertoire, and enhance B cell-mediated autoimmune disease in this murine model of MG.
Similar articles
- Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.
Im SH, Barchan D, Maiti PK, Fuchs S, Souroujon MC. Im SH, et al. J Immunol. 2001 Jun 1;166(11):6893-8. doi: 10.4049/jimmunol.166.11.6893. J Immunol. 2001. PMID: 11359850 - Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region alpha 146-162 of acetylcholine receptor.
Shenoy M, Oshima M, Atassi MZ, Christadoss P. Shenoy M, et al. Clin Immunol Immunopathol. 1993 Mar;66(3):230-8. doi: 10.1006/clin.1993.1030. Clin Immunol Immunopathol. 1993. PMID: 7679342 - Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production.
Deng C, Goluszko E, Tüzün E, Yang H, Christadoss P. Deng C, et al. J Immunol. 2002 Jul 15;169(2):1077-83. doi: 10.4049/jimmunol.169.2.1077. J Immunol. 2002. PMID: 12097416 - Autoimmune responses against acetylcholine receptor: T and B cell collaboration and manipulation by synthetic peptides.
Atassi MZ, Oshima M. Atassi MZ, et al. Crit Rev Immunol. 1997;17(5-6):481-95. Crit Rev Immunol. 1997. PMID: 9419435 Review.
Cited by
- Exploring the role of immune checkpoint inhibitors in the etiology of myasthenia gravis and Lambert-Eaton myasthenic syndrome: A systematic review.
Seligman C, Chang YM, Luo J, Garden OA. Seligman C, et al. Front Neurol. 2023 Jan 9;13:1004810. doi: 10.3389/fneur.2022.1004810. eCollection 2022. Front Neurol. 2023. PMID: 36698907 Free PMC article. - Neurotoxicity of Tumor Immunotherapy: The Emergence of Clinical Attention.
Zhang B, Li X, Yin T, Qin D, Chen Y, Ma Q, Shu P, Wang Y. Zhang B, et al. J Oncol. 2022 Jan 18;2022:4259205. doi: 10.1155/2022/4259205. eCollection 2022. J Oncol. 2022. PMID: 35087588 Free PMC article. Review. - Cytotoxic T lymphocyte antigen-4 regulates development of xenogenic graft versus host disease in mice via modulation of host immune responses induced by changes in human T cell engraftment and gene expression.
Gao C, Gardner D, Theobalds MC, Hitchcock S, Deutsch H, Amuzie C, Cesaroni M, Sargsyan D, Rao TS, Malaviya R. Gao C, et al. Clin Exp Immunol. 2021 Dec;206(3):422-438. doi: 10.1111/cei.13659. Epub 2021 Sep 22. Clin Exp Immunol. 2021. PMID: 34487545 Free PMC article. - Pembrolizumab-Associated Seronegative Myasthenia Gravis in a Patient With Metastatic Renal Cell Carcinoma.
Pandya SK, Ulrickson M, Dong J, Willen R, Pandya A. Pandya SK, et al. Cureus. 2021 May 22;13(5):e15174. doi: 10.7759/cureus.15174. Cureus. 2021. PMID: 34178496 Free PMC article. - Immune Checkpoint Inhibitors and Neurotoxicity.
Zhao Z, Zhang C, Zhou L, Dong P, Shi L. Zhao Z, et al. Curr Neuropharmacol. 2021;19(8):1246-1263. doi: 10.2174/1570159X19666201230151224. Curr Neuropharmacol. 2021. PMID: 33380303 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases