Alterations in a redox oxygen sensing mechanism in chronic hypoxia - PubMed (original) (raw)
Alterations in a redox oxygen sensing mechanism in chronic hypoxia
H L Reeve et al. J Appl Physiol (1985). 2001 Jun.
Free article
Abstract
The mechanism of acute hypoxic pulmonary vasoconstriction (HPV) may involve the inhibition of several voltage-gated K+ channels in pulmonary artery smooth muscle cells. Changes in PO2 can either be sensed directly by the channel(s) or be transmitted to the channel via a redox-based effector mechanism. In control lungs, hypoxia and rotenone acutely decrease production of activated oxygen species, inhibit K+ channels, and cause constriction. Two-day and 3-wk chronic hypoxia (CH) resulted in a decrease in basal activated oxygen species levels, an increase in reduced glutathione, and loss of HPV and rotenone-induced constriction. In contrast, 4-aminopyridine- and KCl-mediated constrictions were preserved. After 3-wk CH, pulmonary arterial smooth muscle cell membrane potential was depolarized, K+ channel density was reduced, and acute hypoxic inhibition of whole cell K+ current was lost. In addition, Kv1.5 and Kv2.1 channel protein was decreased. These data suggest that chronic reduction of the cytosol occurs before changes in K+ channel expression. HPV may be attenuated in CH because of an impaired redox sensor.
Similar articles
- Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.
Archer SL, Wu XC, Thébaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, Michelakis ED. Archer SL, et al. Circ Res. 2004 Aug 6;95(3):308-18. doi: 10.1161/01.RES.0000137173.42723.fb. Epub 2004 Jun 24. Circ Res. 2004. PMID: 15217912 - Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes.
Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A, Nguyen-Huu L, Reeve HL, Hampl V. Archer SL, et al. J Clin Invest. 1998 Jun 1;101(11):2319-30. doi: 10.1172/JCI333. J Clin Invest. 1998. PMID: 9616203 Free PMC article. - A redox-based O2 sensor in rat pulmonary vasculature.
Archer SL, Huang J, Henry T, Peterson D, Weir EK. Archer SL, et al. Circ Res. 1993 Dec;73(6):1100-12. doi: 10.1161/01.res.73.6.1100. Circ Res. 1993. PMID: 8222081 - Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
Archer SL, Weir EK, Reeve HL, Michelakis E. Archer SL, et al. Adv Exp Med Biol. 2000;475:219-40. doi: 10.1007/0-306-46825-5_21. Adv Exp Med Biol. 2000. PMID: 10849663 Review. - Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels.
Coppock EA, Martens JR, Tamkun MM. Coppock EA, et al. Am J Physiol Lung Cell Mol Physiol. 2001 Jul;281(1):L1-12. doi: 10.1152/ajplung.2001.281.1.L1. Am J Physiol Lung Cell Mol Physiol. 2001. PMID: 11404238 Review.
Cited by
- Controlled DNA "damage" and repair in hypoxic signaling.
Gillespie MN, Pastukh VM, Ruchko MV. Gillespie MN, et al. Respir Physiol Neurobiol. 2010 Dec 31;174(3):244-51. doi: 10.1016/j.resp.2010.08.025. Epub 2010 Sep 8. Respir Physiol Neurobiol. 2010. PMID: 20831905 Free PMC article. Review. - A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension.
Jaitovich A, Jourd'heuil D. Jaitovich A, et al. Adv Exp Med Biol. 2017;967:71-81. doi: 10.1007/978-3-319-63245-2_6. Adv Exp Med Biol. 2017. PMID: 29047082 Free PMC article. Review. - Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung.
Jain PP, Hosokawa S, Xiong M, Babicheva A, Zhao T, Rodriguez M, Rahimi S, Pourhashemi K, Balistrieri F, Lai N, Malhotra A, Shyy JY, Valdez-Jasso D, Thistlethwaite PA, Makino A, Yuan JX. Jain PP, et al. Pulm Circ. 2020 Nov 25;10(4):2045894020956592. doi: 10.1177/2045894020956592. eCollection 2020 Oct-Dec. Pulm Circ. 2020. PMID: 33282184 Free PMC article. - Redox Regulation of Ion Channels and Receptors in Pulmonary Hypertension.
Weise-Cross L, Resta TC, Jernigan NL. Weise-Cross L, et al. Antioxid Redox Signal. 2019 Oct 20;31(12):898-915. doi: 10.1089/ars.2018.7699. Epub 2019 Jan 25. Antioxid Redox Signal. 2019. PMID: 30569735 Free PMC article. Review. - Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels.
Veit F, Pak O, Brandes RP, Weissmann N. Veit F, et al. Antioxid Redox Signal. 2015 Feb 20;22(6):537-52. doi: 10.1089/ars.2014.6234. Antioxid Redox Signal. 2015. PMID: 25545236 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources