Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen - PubMed (original) (raw)
. 2001 May 15;61(10):3894-901.
Affiliations
- PMID: 11358802
Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen
J K Leach et al. Cancer Res. 2001.
Abstract
Transient generation of reactive oxygen or nitrogen (ROS/RNS), detected with dihydrodichlorofluoroscein by fluorescence microscopy, occurs within minutes of exposing cells to ionizing radiation. In the 1-10 Gy dose range, the amount of ROS/RNS produced/cell is constant, but the percentage of producing cells increases with dose (20 to 80%). Reversible depolarization of the mitochondrial membrane potential () and decrease in fluorescence of a mitochondria-entrapped dye, calcein, are observed coincidentally. Radiation-induced ROS/RNS, depolarization, and calcein fluorescence decrease are inhibited by the mitochondrial permeability transition inhibitor, cyclosporin A, but not the structural analogue, cyclosporin H. Radiation-stimulated ROS/RNS is also inhibited by overexpressing the Ca(2+)-binding protein, calbindin 28K, or treating cells with an intracellular Ca(2+) chelator. Radiation-induced ROS/RNS is observed in several cell types with the exception of rho(o) cells deficient in mitochondrial electron transport. rho(o) cells show neither radiation-induced ROS/RNS production nor depolarization. We propose that radiation damage in a few mitochondria is transmitted via a reversible, Ca(2+)-dependent mitochondrial permeability transition to adjacent mitochondria with resulting enhanced ROS/RNS generation. Measurements of radiation-induced mitogen-activated protein kinase activity indicate that this sensing/amplification mechanism is necessary for activation of some cytoplasmic signaling pathways by low doses of radiation.
Similar articles
- Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms.
Mikkelsen RB, Wardman P. Mikkelsen RB, et al. Oncogene. 2003 Sep 1;22(37):5734-54. doi: 10.1038/sj.onc.1206663. Oncogene. 2003. PMID: 12947383 Review. - High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species.
Wu S, Xing D, Gao X, Chen WR. Wu S, et al. J Cell Physiol. 2009 Mar;218(3):603-11. doi: 10.1002/jcp.21636. J Cell Physiol. 2009. PMID: 19006121 - Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways.
Manna P, Sinha M, Sil PC. Manna P, et al. Toxicology. 2009 Mar 4;257(1-2):53-63. doi: 10.1016/j.tox.2008.12.008. Epub 2008 Dec 14. Toxicology. 2009. PMID: 19133311 - TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species.
Jin S, Ray RM, Johnson LR. Jin S, et al. Am J Physiol Gastrointest Liver Physiol. 2008 Apr;294(4):G928-37. doi: 10.1152/ajpgi.00219.2007. Epub 2008 Jan 24. Am J Physiol Gastrointest Liver Physiol. 2008. PMID: 18218673 - Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation.
Zhang GX, Lu XM, Kimura S, Nishiyama A. Zhang GX, et al. Cardiovasc Res. 2007 Nov 1;76(2):204-12. doi: 10.1016/j.cardiores.2007.07.014. Epub 2007 Jul 28. Cardiovasc Res. 2007. PMID: 17698051 Review.
Cited by
- A mitochondrial superoxide theory for oxidative stress diseases and aging.
Indo HP, Yen HC, Nakanishi I, Matsumoto K, Tamura M, Nagano Y, Matsui H, Gusev O, Cornette R, Okuda T, Minamiyama Y, Ichikawa H, Suenaga S, Oki M, Sato T, Ozawa T, Clair DK, Majima HJ. Indo HP, et al. J Clin Biochem Nutr. 2015 Jan;56(1):1-7. doi: 10.3164/jcbn.14-42. Epub 2014 Dec 23. J Clin Biochem Nutr. 2015. PMID: 25834301 Free PMC article. Review. - Oxidative stress and antioxidant defense.
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Birben E, et al. World Allergy Organ J. 2012 Jan;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613. Epub 2012 Jan 13. World Allergy Organ J. 2012. PMID: 23268465 Free PMC article. - A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster.
Pickering AM, Staab TA, Tower J, Sieburth D, Davies KJ. Pickering AM, et al. J Exp Biol. 2013 Feb 15;216(Pt 4):543-53. doi: 10.1242/jeb.074757. Epub 2012 Oct 4. J Exp Biol. 2013. PMID: 23038734 Free PMC article. - Tyrosine nitration of IkappaBalpha: a novel mechanism for NF-kappaB activation.
Yakovlev VA, Barani IJ, Rabender CS, Black SM, Leach JK, Graves PR, Kellogg GE, Mikkelsen RB. Yakovlev VA, et al. Biochemistry. 2007 Oct 23;46(42):11671-83. doi: 10.1021/bi701107z. Epub 2007 Oct 2. Biochemistry. 2007. PMID: 17910475 Free PMC article. - Radiation-induced alterations in mitochondria of the rat heart.
Sridharan V, Aykin-Burns N, Tripathi P, Krager KJ, Sharma SK, Moros EG, Corry PM, Nowak G, Hauer-Jensen M, Boerma M. Sridharan V, et al. Radiat Res. 2014 Mar;181(3):324-34. doi: 10.1667/RR13452.1. Epub 2014 Feb 25. Radiat Res. 2014. PMID: 24568130 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Miscellaneous