The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes - PubMed (original) (raw)
. 2001 Jul 27;276(30):28075-82.
doi: 10.1074/jbc.M102170200. Epub 2001 May 31.
Affiliations
- PMID: 11387325
- DOI: 10.1074/jbc.M102170200
Free article
The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes
Y Pei et al. J Biol Chem. 2001.
Free article
Abstract
The carboxyl-terminal domain (CTD) of elongating RNA polymerase II serves as a landing pad for macromolecular assemblies that regulate mRNA synthesis and processing. The capping apparatus is the first of the assemblies to act on the nascent pre-mRNA and the one for which binding of the catalytic components is most clearly dependent on CTD phosphorylation. The present study highlights a distinctive strategy of cap targeting in fission yeast whereby the triphosphatase (Pct1) and guanylyltransferase (Pce1) enzymes of the capping apparatus do not interact physically with each other (as they do in budding yeast and metazoans), but instead bind independently to the phosphorylated CTD. In vivo interactions of Pct1 and Pce1 with the CTD in a two-hybrid assay require 12 and 14 tandem repeats of the CTD heptapeptide, respectively. Pct1 and Pce1 bind in vitro to synthetic CTD peptides containing phosphoserine uniquely at position 5 or doubly at positions 2 and 5 of each of four tandem YSPTSPS repeats, but they bind weakly (Pce1) or not at all (Pct1) to a peptide containing phosphoserine at position 2. These results illustrate how remodeling of the CTD phosphorylation array might influence the recruitment and dissociation of the capping enzymes during elongation. But how does the CTD structure itself dictate interactions with the RNA processing enzymes independent of the phosphorylation state? Using CTD-Ser5 phosphopeptides containing alanine substitutions at other positions of the heptad, we define essential roles for Tyr-1 and Pro-3 (but not Thr-4 or Pro-6) in the binding of Schizosaccharomyces pombe guanylyltransferase. Tyr-1 is also essential for binding and allosteric activation of mammalian guanylyltransferase by CTD Ser5-PO4, whereas alanine mutations of Pro-3 and Pro-6 reduce the affinity for the allosteric CTD-binding site. These are the first structure-activity relationships deduced for an effector function of the phosphorylated CTD.
Similar articles
- Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5.
Pei Y, Shuman S. Pei Y, et al. J Biol Chem. 2002 May 31;277(22):19639-48. doi: 10.1074/jbc.M200015200. Epub 2002 Mar 13. J Biol Chem. 2002. PMID: 11893740 - Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
Schneider S, Pei Y, Shuman S, Schwer B. Schneider S, et al. Mol Cell Biol. 2010 May;30(10):2353-64. doi: 10.1128/MCB.00116-10. Epub 2010 Mar 15. Mol Cell Biol. 2010. PMID: 20231361 Free PMC article. - Updating the RNA polymerase CTD code: adding gene-specific layers.
Egloff S, Dienstbier M, Murphy S. Egloff S, et al. Trends Genet. 2012 Jul;28(7):333-41. doi: 10.1016/j.tig.2012.03.007. Epub 2012 May 21. Trends Genet. 2012. PMID: 22622228 Review. - Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
Heidemann M, Hintermair C, Voß K, Eick D. Heidemann M, et al. Biochim Biophys Acta. 2013 Jan;1829(1):55-62. doi: 10.1016/j.bbagrm.2012.08.013. Epub 2012 Sep 7. Biochim Biophys Acta. 2013. PMID: 22982363 Review.
Cited by
- Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1.
Schwer B, Ghosh A, Sanchez AM, Lima CD, Shuman S. Schwer B, et al. RNA. 2015 Jun;21(6):1135-46. doi: 10.1261/rna.050286.115. Epub 2015 Apr 16. RNA. 2015. PMID: 25883047 Free PMC article. - The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling.
Lejeune F, Ishigaki Y, Li X, Maquat LE. Lejeune F, et al. EMBO J. 2002 Jul 1;21(13):3536-45. doi: 10.1093/emboj/cdf345. EMBO J. 2002. PMID: 12093754 Free PMC article. - Structural insights to how mammalian capping enzyme reads the CTD code.
Ghosh A, Shuman S, Lima CD. Ghosh A, et al. Mol Cell. 2011 Jul 22;43(2):299-310. doi: 10.1016/j.molcel.2011.06.001. Epub 2011 Jun 16. Mol Cell. 2011. PMID: 21683636 Free PMC article. - Enzymology of RNA cap synthesis.
Ghosh A, Lima CD. Ghosh A, et al. Wiley Interdiscip Rev RNA. 2010 Jul-Aug;1(1):152-72. doi: 10.1002/wrna.19. Epub 2010 May 25. Wiley Interdiscip Rev RNA. 2010. PMID: 21956912 Free PMC article. Review. - Punctuation and syntax of the RNA polymerase II CTD code in fission yeast.
Schwer B, Sanchez AM, Shuman S. Schwer B, et al. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18024-9. doi: 10.1073/pnas.1208995109. Epub 2012 Oct 15. Proc Natl Acad Sci U S A. 2012. PMID: 23071310 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous