A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes - PubMed (original) (raw)
A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes
P Baldi et al. Bioinformatics. 2001 Jun.
Abstract
Motivation: DNA microarrays are now capable of providing genome-wide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory due to the lack of a systematic framework that can accommodate noise, variability, and low replication often typical of microarray data.
Results: We develop a Bayesian probabilistic framework for microarray data analysis. At the simplest level, we model log-expression values by independent normal distributions, parameterized by corresponding means and variances with hierarchical prior distributions. We derive point estimates for both parameters and hyperparameters, and regularized expressions for the variance of each gene by combining the empirical variance with a local background variance associated with neighboring genes. An additional hyperparameter, inversely related to the number of empirical observations, determines the strength of the background variance. Simulations show that these point estimates, combined with a t -test, provide a systematic inference approach that compares favorably with simple t -test or fold methods, and partly compensate for the lack of replication.
Similar articles
- Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments.
Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf GD, Medvedovic M. Sartor MA, et al. BMC Bioinformatics. 2006 Dec 19;7:538. doi: 10.1186/1471-2105-7-538. BMC Bioinformatics. 2006. PMID: 17177995 Free PMC article. - Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
Zhao H, Chan KL, Cheng LM, Yan H. Zhao H, et al. BMC Bioinformatics. 2008;9 Suppl 1(Suppl 1):S9. doi: 10.1186/1471-2105-9-S1-S9. BMC Bioinformatics. 2008. PMID: 18315862 Free PMC article. - A two-sample Bayesian t-test for microarray data.
Fox RJ, Dimmic MW. Fox RJ, et al. BMC Bioinformatics. 2006 Mar 10;7:126. doi: 10.1186/1471-2105-7-126. BMC Bioinformatics. 2006. PMID: 16529652 Free PMC article. - Differential analysis of DNA microarray gene expression data.
Hatfield GW, Hung SP, Baldi P. Hatfield GW, et al. Mol Microbiol. 2003 Feb;47(4):871-7. doi: 10.1046/j.1365-2958.2003.03298.x. Mol Microbiol. 2003. PMID: 12581345 Review. - Volcano plots in analyzing differential expressions with mRNA microarrays.
Li W. Li W. J Bioinform Comput Biol. 2012 Dec;10(6):1231003. doi: 10.1142/S0219720012310038. Epub 2012 Oct 15. J Bioinform Comput Biol. 2012. PMID: 23075208 Review.
Cited by
- Glycogen synthase kinase 3 inhibition controls Mycobacterium tuberculosis infection.
Peña-Díaz S, Chao JD, Rens C, Haghdadi H, Zheng X, Flanagan K, Ko M, Shapira T, Richter A, Maestre-Batlle D, Canseco JO, Gutierrez MG, Duc KD, Pelech S, Av-Gay Y. Peña-Díaz S, et al. iScience. 2024 Jul 20;27(8):110555. doi: 10.1016/j.isci.2024.110555. eCollection 2024 Aug 16. iScience. 2024. PMID: 39175770 Free PMC article. - Screening and preliminary validation of miRNAs with the regulation of hTERT in colorectal cancer.
Qin YZ, Xie XC, Liu HZ, Lai H, Qiu H, Ge LY. Qin YZ, et al. Oncol Rep. 2015 Jun;33(6):2728-36. doi: 10.3892/or.2015.3892. Epub 2015 Apr 1. Oncol Rep. 2015. PMID: 25845814 Free PMC article. - Metabolic changes associated with methionine stress sensitivity in MDA-MB-468 breast cancer cells.
Borrego SL, Fahrmann J, Datta R, Stringari C, Grapov D, Zeller M, Chen Y, Wang P, Baldi P, Gratton E, Fiehn O, Kaiser P. Borrego SL, et al. Cancer Metab. 2016 May 2;4:9. doi: 10.1186/s40170-016-0148-6. eCollection 2016. Cancer Metab. 2016. PMID: 27141305 Free PMC article. - From hybridization theory to microarray data analysis: performance evaluation.
Berger F, Carlon E. Berger F, et al. BMC Bioinformatics. 2011 Dec 2;12:464. doi: 10.1186/1471-2105-12-464. BMC Bioinformatics. 2011. PMID: 22136743 Free PMC article. - LncRNA Expression Discriminates Karyotype and Predicts Survival in B-Lymphoblastic Leukemia.
Fernando TR, Rodriguez-Malave NI, Waters EV, Yan W, Casero D, Basso G, Pigazzi M, Rao DS. Fernando TR, et al. Mol Cancer Res. 2015 May;13(5):839-51. doi: 10.1158/1541-7786.MCR-15-0006-T. Epub 2015 Feb 13. Mol Cancer Res. 2015. PMID: 25681502 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources