A new software routine that automates the fitting of protein X-ray crystallographic electron-density maps - PubMed (original) (raw)
. 2001 Jul;57(Pt 7):1013-9.
doi: 10.1107/s0907444901006394. Epub 2001 Jun 21.
Affiliations
- PMID: 11418771
- DOI: 10.1107/s0907444901006394
A new software routine that automates the fitting of protein X-ray crystallographic electron-density maps
D G Levitt. Acta Crystallogr D Biol Crystallogr. 2001 Jul.
Abstract
The classical approach to building the amino-acid residues into the initial electron-density map requires days to weeks of a skilled investigator's time. Automating this procedure should not only save time, but has the potential to provide a more accurate starting model for input to refinement programs. The new software routine MAID builds the protein structure into the electron-density map in a series of sequential steps. The first step is the fitting of the secondary alpha-helix and beta-sheet structures. These 'fits' are then used to determine the local amino-acid sequence assignment. These assigned fits are then extended through the loop regions and fused with the neighboring sheet or helix. The program was tested on the unaveraged 2.5 A selenomethionine multiple-wavelength anomalous dispersion (SMAD) electron-density map that was originally used to solve the structure of the 291-residue protein human heart short-chain L-3-hydroxyacyl-CoA dehydrogenase (SHAD). Inputting just the map density and the amino-acid sequence, MAID fitted 80% of the residues with an r.m.s.d. error of 0.43 A for the main-chain atoms and 1.0 A for all atoms without any user intervention. When tested on a higher quality 1.9 A SMAD map, MAID correctly fitted 100% (418) of the residues. A major advantage of the MAID fitting procedure is that it maintains ideal bond lengths and angles and constrains phi/psi angles to the appropriate Ramachandran regions. Recycling the output of this new routine through a partial structure-refinement program may have the potential to completely automate the fitting of electron-density maps.
Similar articles
- An evaluation of automated model-building procedures for protein crystallography.
Badger J. Badger J. Acta Crystallogr D Biol Crystallogr. 2003 May;59(Pt 5):823-7. doi: 10.1107/s0907444903003792. Epub 2003 Apr 25. Acta Crystallogr D Biol Crystallogr. 2003. PMID: 12777797 - Crystallographic protein model-building on the web.
Gopal K, McKee E, Romo T, Pai R, Smith J, Sacchettini J, Ioerger T. Gopal K, et al. Bioinformatics. 2007 Feb 1;23(3):375-7. doi: 10.1093/bioinformatics/btl584. Epub 2006 Nov 30. Bioinformatics. 2007. PMID: 17138588 - ConfMatch: automating electron-density map interpretation by matching conformations.
Wang CE. Wang CE. Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1591-611. doi: 10.1107/s0907444900011859. Acta Crystallogr D Biol Crystallogr. 2000. PMID: 11092926 - You are lost without a map: Navigating the sea of protein structures.
Lamb AL, Kappock TJ, Silvaggi NR. Lamb AL, et al. Biochim Biophys Acta. 2015 Apr;1854(4):258-68. doi: 10.1016/j.bbapap.2014.12.021. Epub 2014 Dec 29. Biochim Biophys Acta. 2015. PMID: 25554228 Free PMC article. Review. - Refinement of Atomic Structures Against cryo-EM Maps.
Murshudov GN. Murshudov GN. Methods Enzymol. 2016;579:277-305. doi: 10.1016/bs.mie.2016.05.033. Epub 2016 Jun 24. Methods Enzymol. 2016. PMID: 27572731 Review.
Cited by
- Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum.
Brunger AT, Das D, Deacon AM, Grant J, Terwilliger TC, Read RJ, Adams PD, Levitt M, Schröder GF. Brunger AT, et al. Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):391-403. doi: 10.1107/S090744491104978X. Epub 2012 Mar 16. Acta Crystallogr D Biol Crystallogr. 2012. PMID: 22505259 Free PMC article. - Crystallization, X-ray diffraction analysis and SIRAS/molecular-replacenent phasing of three crystal forms of Anabaena sensory rhodopsin transducer.
Vogeley L, Luecke H. Vogeley L, et al. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Apr 1;62(Pt 4):388-91. doi: 10.1107/S1744309106008359. Epub 2006 Mar 25. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006. PMID: 16582492 Free PMC article. - Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition.
Ahn HJ, Kim HW, Yoon HJ, Lee BI, Suh SW, Yang JK. Ahn HJ, et al. EMBO J. 2003 Jun 2;22(11):2593-603. doi: 10.1093/emboj/cdg269. EMBO J. 2003. PMID: 12773376 Free PMC article. - Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement.
Terwilliger TC. Terwilliger TC. Acta Crystallogr D Biol Crystallogr. 2003 Jul;59(Pt 7):1174-82. doi: 10.1107/s0907444903009922. Epub 2003 Jun 27. Acta Crystallogr D Biol Crystallogr. 2003. PMID: 12832760 Free PMC article. - Crystal structure of LeuA from Mycobacterium tuberculosis, a key enzyme in leucine biosynthesis.
Koon N, Squire CJ, Baker EN. Koon N, et al. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8295-300. doi: 10.1073/pnas.0400820101. Epub 2004 May 24. Proc Natl Acad Sci U S A. 2004. PMID: 15159544 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources