Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing - PubMed (original) (raw)
. 2001 Jun 22;88(12):1259-66.
doi: 10.1161/hh1201.091960.
Affiliations
- PMID: 11420302
- DOI: 10.1161/hh1201.091960
Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing
G B Waypa et al. Circ Res. 2001.
Abstract
We tested whether mitochondria function as the O(2) sensor underlying hypoxic pulmonary vasoconstriction (HPV). In buffer-perfused rat lungs, rotenone, myxothiazol, and diphenyleneiodonium, which inhibit mitochondria in the proximal region of the electron transport chain (ETC), abolished HPV without attenuating the response to U46619. Cyanide and antimycin A inhibit electron transfer in the distal region of the ETC, but they did not abolish HPV. Cultured pulmonary artery (PA) myocytes contract in response to hypoxia or to U46619. The hypoxic response was abolished while the response to U46619 was maintained in mutant (rho(0)) PA myocytes lacking a mitochondrial ETC. To test whether reactive oxygen species (ROS) derived from mitochondria act as signaling agents in HPV, the antioxidants pyrrolidinedithiocarbamate and ebselen and the Cu,Zn superoxide dismutase inhibitor diethyldithiocarbamate were used. These abolished HPV without affecting contraction to U46619, suggesting that ROS act as second messengers. In cultured PA myocytes, oxidation of intracellular 2',7'-dichlorofluorescin diacetate (DCFH) dye increased under 2% O(2), indicating that myocytes increase their generation of H(2)O(2) during hypoxia. This was attenuated by myxothiazol, implicating mitochondria as the source of increased ROS during HPV. These results indicate that mitochondrial ATP is not required for HPV, that mitochondria function as O(2) sensors during hypoxia, and that ROS generated in the proximal region of the ETC act as second messengers in the response.
Comment in
- Hypoxic pulmonary vasoconstriction: a radical view.
Sylvester JT. Sylvester JT. Circ Res. 2001 Jun 22;88(12):1228-30. doi: 10.1161/hh1201.093167. Circ Res. 2001. PMID: 11420297 No abstract available. - Hypoxic pulmonary vasoconstriction: ups and downs of reactive oxygen species.
Sham JS. Sham JS. Circ Res. 2002 Oct 18;91(8):649-51. doi: 10.1161/01.res.0000039065.10754.de. Circ Res. 2002. PMID: 12386138 No abstract available.
Similar articles
- Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs.
Weissmann N, Ebert N, Ahrens M, Ghofrani HA, Schermuly RT, Hänze J, Fink L, Rose F, Conzen J, Seeger W, Grimminger F. Weissmann N, et al. Am J Respir Cell Mol Biol. 2003 Dec;29(6):721-32. doi: 10.1165/rcmb.2002-0217OC. Epub 2003 Jun 5. Am J Respir Cell Mol Biol. 2003. PMID: 12791676 - Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes.
Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT. Waypa GB, et al. Circ Res. 2002 Oct 18;91(8):719-26. doi: 10.1161/01.res.0000036751.04896.f1. Circ Res. 2002. PMID: 12386149 - Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor.
Leach RM, Hill HM, Snetkov VA, Robertson TP, Ward JP. Leach RM, et al. J Physiol. 2001 Oct 1;536(Pt 1):211-24. doi: 10.1111/j.1469-7793.2001.00211.x. J Physiol. 2001. PMID: 11579170 Free PMC article. - Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
Sommer N, Strielkov I, Pak O, Weissmann N. Sommer N, et al. Eur Respir J. 2016 Jan;47(1):288-303. doi: 10.1183/13993003.00945-2015. Epub 2015 Oct 22. Eur Respir J. 2016. PMID: 26493804 Review. - Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
Michelakis ED, Thébaud B, Weir EK, Archer SL. Michelakis ED, et al. J Mol Cell Cardiol. 2004 Dec;37(6):1119-36. doi: 10.1016/j.yjmcc.2004.09.007. J Mol Cell Cardiol. 2004. PMID: 15572043 Review.
Cited by
- Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity.
Richards EM, Rosenthal RE, Kristian T, Fiskum G. Richards EM, et al. Free Radic Biol Med. 2006 Jun 1;40(11):1960-70. doi: 10.1016/j.freeradbiomed.2006.01.022. Epub 2006 Feb 17. Free Radic Biol Med. 2006. PMID: 16716897 Free PMC article. - Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes.
Hamanaka RB, Chandel NS. Hamanaka RB, et al. Trends Biochem Sci. 2010 Sep;35(9):505-13. doi: 10.1016/j.tibs.2010.04.002. Epub 2010 Apr 27. Trends Biochem Sci. 2010. PMID: 20430626 Free PMC article. Review. - The role of NADPH oxidase in carotid body arterial chemoreceptors.
Dinger B, He L, Chen J, Liu X, Gonzalez C, Obeso A, Sanders K, Hoidal J, Stensaas L, Fidone S. Dinger B, et al. Respir Physiol Neurobiol. 2007 Jul 1;157(1):45-54. doi: 10.1016/j.resp.2006.12.003. Epub 2006 Dec 15. Respir Physiol Neurobiol. 2007. PMID: 17223613 Free PMC article. Review. - Mitochondrial reactive oxygen species regulate hypoxic signaling.
Hamanaka RB, Chandel NS. Hamanaka RB, et al. Curr Opin Cell Biol. 2009 Dec;21(6):894-9. doi: 10.1016/j.ceb.2009.08.005. Epub 2009 Sep 24. Curr Opin Cell Biol. 2009. PMID: 19781926 Free PMC article. Review. - Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes.
Korde AS, Yadav VR, Zheng YM, Wang YX. Korde AS, et al. Free Radic Biol Med. 2011 Apr 15;50(8):945-52. doi: 10.1016/j.freeradbiomed.2011.01.010. Epub 2011 Jan 14. Free Radic Biol Med. 2011. PMID: 21238580 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources