E. coli Rep oligomers are required to initiate DNA unwinding in vitro - PubMed (original) (raw)
. 2001 Jul 6;310(2):327-50.
doi: 10.1006/jmbi.2001.4758.
Affiliations
- PMID: 11428893
- DOI: 10.1006/jmbi.2001.4758
E. coli Rep oligomers are required to initiate DNA unwinding in vitro
W Cheng et al. J Mol Biol. 2001.
Abstract
E. coli Rep protein is a 3' to 5' SF1 superfamily DNA helicase which is monomeric in the absence of DNA, but can dimerize upon binding either single-stranded or duplex DNA. A variety of biochemical studies have led to proposals that Rep dimerization is important for its helicase activity; however, recent structural studies of Bacillus stearothermophilus PcrA have led to suggestions that SF1 helicases, such as E. coli Rep and E. coli UvrD, function as monomeric helicases. We have examined the question of whether Rep oligomerization is important for its DNA helicase activity using pre-steady state stopped-flow and chemical quenched-flow kinetic studies of Rep-catalyzed DNA unwinding. The results from four independent experiments demonstrate that Rep oligomerization is required for initiation of DNA helicase activity in vitro. No DNA unwinding is observed when only a Rep monomer is bound to the DNA substrate, even when fluorescent DNA substrates are used that can detect partial unwinding of the first few base-pairs at the ss-ds-DNA junction. In fact, under these conditions, ATP hydrolysis causes dissociation of the Rep monomer from the DNA, rather than DNA unwinding. These studies demonstrate that wild-type Rep monomers are unable to initiate DNA unwinding in vitro, and that oligomerization is required.
Copyright 2001 Academic Press.
Similar articles
- An oligomeric form of E. coli UvrD is required for optimal helicase activity.
Ali JA, Maluf NK, Lohman TM. Ali JA, et al. J Mol Biol. 1999 Nov 5;293(4):815-34. doi: 10.1006/jmbi.1999.3185. J Mol Biol. 1999. PMID: 10543970 - A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
Hsieh J, Moore KJ, Lohman TM. Hsieh J, et al. J Mol Biol. 1999 Apr 30;288(2):255-74. doi: 10.1006/jmbi.1999.2666. J Mol Biol. 1999. PMID: 10329141 - A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro.
Maluf NK, Fischer CJ, Lohman TM. Maluf NK, et al. J Mol Biol. 2003 Jan 31;325(5):913-35. doi: 10.1016/s0022-2836(02)01277-9. J Mol Biol. 2003. PMID: 12527299 - Mechanisms of helicase-catalyzed DNA unwinding.
Lohman TM, Bjornson KP. Lohman TM, et al. Annu Rev Biochem. 1996;65:169-214. doi: 10.1146/annurev.bi.65.070196.001125. Annu Rev Biochem. 1996. PMID: 8811178 Review. - Helicase structures: a new twist on DNA unwinding.
Marians KJ. Marians KJ. Structure. 1997 Sep 15;5(9):1129-34. doi: 10.1016/s0969-2126(97)00263-3. Structure. 1997. PMID: 9331421 Review.
Cited by
- Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon.
Rusch SL, Kendall DA. Rusch SL, et al. Biochim Biophys Acta. 2007 Jan;1768(1):5-12. doi: 10.1016/j.bbamem.2006.08.013. Epub 2006 Aug 30. Biochim Biophys Acta. 2007. PMID: 17011510 Free PMC article. Review. - General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.
Lucius AL, Maluf NK, Fischer CJ, Lohman TM. Lucius AL, et al. Biophys J. 2003 Oct;85(4):2224-39. doi: 10.1016/S0006-3495(03)74648-7. Biophys J. 2003. PMID: 14507688 Free PMC article. - UvrD helicase activation by MutL involves rotation of its 2B subdomain.
Ordabayev YA, Nguyen B, Kozlov AG, Jia H, Lohman TM. Ordabayev YA, et al. Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16320-16325. doi: 10.1073/pnas.1905513116. Epub 2019 Jul 30. Proc Natl Acad Sci U S A. 2019. PMID: 31363055 Free PMC article. - Quantitative and kinetic single-molecule analysis of DNA unwinding by Escherichia coli UvrD helicase.
Yokota H. Yokota H. Biophys Physicobiol. 2022 Mar 10;19:1-16. doi: 10.2142/biophysico.bppb-v19.0006. eCollection 2022. Biophys Physicobiol. 2022. PMID: 35435650 Free PMC article. - Subunit Communication within Dimeric SF1 DNA Helicases.
Nguyen B, Hsieh J, Fischer CJ, Lohman TM. Nguyen B, et al. J Mol Biol. 2024 Jun 1;436(11):168578. doi: 10.1016/j.jmb.2024.168578. Epub 2024 Apr 20. J Mol Biol. 2024. PMID: 38648969
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases