Separation and characterization of individual mycolic acids in representative mycobacteria - PubMed (original) (raw)
. 2001 Jul;147(Pt 7):1825-1837.
doi: 10.1099/00221287-147-7-1825.
Affiliations
- PMID: 11429460
- DOI: 10.1099/00221287-147-7-1825
Free article
Separation and characterization of individual mycolic acids in representative mycobacteria
Motoko Watanabe et al. Microbiology (Reading). 2001 Jul.
Free article
Abstract
Total mycolic acid methyl ester fractions were isolated from 24 representatives of Mycobacterium tuberculosis, Mycobacterium bovis (including BCG), Mycobacterium microti, Mycobacterium kansasii and Mycobacterium avium. The total mycolate functional group composition was estimated from (1)H-NMR spectra. Mycolates were separated into alpha-mycolates, methoxymycolates and ketomycolates and each class was further separated by argentation chromatography into mycolates with no double bonds, with one trans-double bond and with one cis-double bond. Mass spectrometry revealed the mycolate chain lengths and (1)H-NMR the cis- and trans-double bond and cyclopropane ring content. The same species had similar mycolate profiles; the major type of each class had cis- or trans-cyclopropane rings and lacked double bonds. Minor proportions of possible unsaturated precursors of the cyclopropane mycolates were commonly encountered. Among unusual alpha-mycolates, many strains had tricyclopropyl components with chains extended by 6 to 8 carbons. Significantly, M. tuberculosis (Canetti) and M. avium had alpha-mycolates with a trans-double bond and cyclopropane ring, whose chain lengths suggested a relationship to possible precursors of oxygenated mycolates. The methoxy- and ketomycolates from a majority of M. tuberculosis strains had minor amounts of components with additional cyclopropane rings, some of whose chains were also extended by 6 to 8 carbons. These latter mycolates were major components in the attenuated M. tuberculosis H37Ra strain, whose mycolate profile was distinct from those of other strains of M. tuberculosis.
Similar articles
- Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids.
Watanabe M, Aoyagi Y, Mitome H, Fujita T, Naoki H, Ridell M, Minnikin DE. Watanabe M, et al. Microbiology (Reading). 2002 Jun;148(Pt 6):1881-1902. doi: 10.1099/00221287-148-6-1881. Microbiology (Reading). 2002. PMID: 12055308 - Comprehensive analysis of mycolic acid subclass and molecular species composition of Mycobacterium bovis BCG Tokyo 172 cell wall skeleton (SMP-105).
Uenishi Y, Fujita Y, Kusunose N, Yano I, Sunagawa M. Uenishi Y, et al. J Microbiol Methods. 2008 Feb;72(2):149-56. doi: 10.1016/j.mimet.2007.11.016. Epub 2007 Nov 22. J Microbiol Methods. 2008. PMID: 18178279 - The HPLC-double-cluster pattern of some Mycobacterium gordonae strains is due to their dicarboxy-mycolate content.
Astola J, Muñoz M, Sempere M, Coll P, Luquin M, Valero-Guillén PL. Astola J, et al. Microbiology (Reading). 2002 Oct;148(Pt 10):3119-3127. doi: 10.1099/00221287-148-10-3119. Microbiology (Reading). 2002. PMID: 12368445 - Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry.
Fujita Y, Naka T, Doi T, Yano I. Fujita Y, et al. Microbiology (Reading). 2005 May;151(Pt 5):1443-1452. doi: 10.1099/mic.0.27791-0. Microbiology (Reading). 2005. PMID: 15870454 - Mycolic acid analysis by high-performance liquid chromatography for identification of Mycobacterium species.
Butler WR, Guthertz LS. Butler WR, et al. Clin Microbiol Rev. 2001 Oct;14(4):704-26, table of contents. doi: 10.1128/CMR.14.4.704-726.2001. Clin Microbiol Rev. 2001. PMID: 11585782 Free PMC article. Review.
Cited by
- Exploring the Enzymatic and Antibacterial Activities of Novel Mycobacteriophage Lysin B Enzymes.
Abouhmad A, Korany AH, Grey C, Dishisha T, Hatti-Kaul R. Abouhmad A, et al. Int J Mol Sci. 2020 Apr 30;21(9):3176. doi: 10.3390/ijms21093176. Int J Mol Sci. 2020. PMID: 32365915 Free PMC article. - Free Energy Barriers for Passive Drug Transport through the Mycobacterium tuberculosis Outer Membrane: A Molecular Dynamics Study.
Steshin IS, Vasyankin AV, Shirokova EA, Rozhkov AV, Livshits GD, Panteleev SV, Radchenko EV, Ignatov SK, Palyulin VA. Steshin IS, et al. Int J Mol Sci. 2024 Jan 13;25(2):1006. doi: 10.3390/ijms25021006. Int J Mol Sci. 2024. PMID: 38256079 Free PMC article. - DGCR8 deficiency impairs macrophage growth and unleashes the interferon response to mycobacteria.
Killy B, Bodendorfer B, Mages J, Ritter K, Schreiber J, Hölscher C, Pracht K, Ekici A, Jäck HM, Lang R. Killy B, et al. Life Sci Alliance. 2021 Mar 26;4(6):e202000810. doi: 10.26508/lsa.202000810. Print 2021 Jun. Life Sci Alliance. 2021. PMID: 33771876 Free PMC article. - Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase.
Payne K, Sun Q, Sacchettini J, Hatfull GF. Payne K, et al. Mol Microbiol. 2009 Aug;73(3):367-81. doi: 10.1111/j.1365-2958.2009.06775.x. Epub 2009 Jun 22. Mol Microbiol. 2009. PMID: 19555454 Free PMC article. - CD1b-restricted GEM T cell responses are modulated by Mycobacterium tuberculosis mycolic acid meromycolate chains.
Chancellor A, Tocheva AS, Cave-Ayland C, Tezera L, White A, Al Dulayymi JR, Bridgeman JS, Tews I, Wilson S, Lissin NM, Tebruegge M, Marshall B, Sharpe S, Elliott T, Skylaris CK, Essex JW, Baird MS, Gadola S, Elkington P, Mansour S. Chancellor A, et al. Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E10956-E10964. doi: 10.1073/pnas.1708252114. Epub 2017 Nov 20. Proc Natl Acad Sci U S A. 2017. PMID: 29158404 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources