Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization - PubMed (original) (raw)
Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization
S Paradis et al. Neuron. 2001 Jun.
Free article
Erratum in
- Neuron 2001 Jul 19;31(1):167
Abstract
Homeostatic mechanisms regulate synaptic function to maintain nerve and muscle excitation within reasonable physiological limits. The mechanisms that initiate homeostasic changes to synaptic function are not known. We specifically impaired cellular depolarization by expressing the Kir2.1 potassium channel in Drosophila muscle. In Kir2.1-expressing muscle there is a persistent outward potassium current ( approximately 10 nA), decreased muscle input resistance (50-fold), and a hyperpolarized resting potential. Despite impaired muscle excitability, synaptic depolarization of muscle achieves wild-type levels. A quantal analysis demonstrates that increased presynaptic release (quantal content), without a change in quantal size (mEPSC amplitude), compensates for altered muscle excitation. Because morphological synaptic growth is normal, we conclude that a homeostatic increase in presynaptic release compensates for impaired muscle excitability. These data demonstrate that a monitor of muscle membrane depolarization is sufficient to initiate synaptic homeostatic compensation.
Similar articles
- Involvement of hyperpolarization-activated cation channels in synaptic modulation.
Genlain M, Godaux E, Ris L. Genlain M, et al. Neuroreport. 2007 Aug 6;18(12):1231-5. doi: 10.1097/WNR.0b013e32821c538f. Neuroreport. 2007. PMID: 17632273 - Non-quantal acetylcholine release at the neuromuscular junction.
Vyskocil F, Malomouzh AI, Nikolsky EE. Vyskocil F, et al. Physiol Res. 2009;58(6):763-784. doi: 10.33549/physiolres.931865. Physiol Res. 2009. PMID: 20059289 Review. - Homeostatic regulation of glutamate release in response to depolarization.
Moulder KL, Meeks JP, Mennerick S. Moulder KL, et al. Mol Neurobiol. 2006 Apr;33(2):133-53. doi: 10.1385/MN:33:2:133. Mol Neurobiol. 2006. PMID: 16603793 Review.
Cited by
- Forebrain E-I balance controlled in cognition through coordinated inhibition and inhibitory transcriptome mechanism.
Tian T, Cai Y, Qin X, Wang J, Wang Y, Yang X. Tian T, et al. Front Cell Neurosci. 2023 Feb 24;17:1114037. doi: 10.3389/fncel.2023.1114037. eCollection 2023. Front Cell Neurosci. 2023. PMID: 36909282 Free PMC article. - Postsynaptic protein kinase A reduces neuronal excitability in response to increased synaptic excitation in the Drosophila CNS.
Baines RA. Baines RA. J Neurosci. 2003 Sep 24;23(25):8664-72. doi: 10.1523/JNEUROSCI.23-25-08664.2003. J Neurosci. 2003. PMID: 14507965 Free PMC article. - Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system.
Zwart MF, Randlett O, Evers JF, Landgraf M. Zwart MF, et al. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3878-87. doi: 10.1073/pnas.1311711110. Epub 2013 Sep 16. Proc Natl Acad Sci U S A. 2013. PMID: 24043825 Free PMC article. - Endocrine regulation of airway clearance in Drosophila.
Kim DH, Kim YJ, Adams ME. Kim DH, et al. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1535-1540. doi: 10.1073/pnas.1717257115. Epub 2018 Jan 31. Proc Natl Acad Sci U S A. 2018. PMID: 29386394 Free PMC article. - Manipulations of spinal cord excitability evoke developmentally-dependent compensatory changes in the lamprey spinal cord.
Cooke RM, Luco S, Parker D. Cooke RM, et al. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Jan;198(1):25-41. doi: 10.1007/s00359-011-0683-0. Epub 2011 Oct 29. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012. PMID: 22037910
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous