Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization - PubMed (original) (raw)
Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization
S Paradis et al. Neuron. 2001 Jun.
Free article
Erratum in
- Neuron 2001 Jul 19;31(1):167
Abstract
Homeostatic mechanisms regulate synaptic function to maintain nerve and muscle excitation within reasonable physiological limits. The mechanisms that initiate homeostasic changes to synaptic function are not known. We specifically impaired cellular depolarization by expressing the Kir2.1 potassium channel in Drosophila muscle. In Kir2.1-expressing muscle there is a persistent outward potassium current ( approximately 10 nA), decreased muscle input resistance (50-fold), and a hyperpolarized resting potential. Despite impaired muscle excitability, synaptic depolarization of muscle achieves wild-type levels. A quantal analysis demonstrates that increased presynaptic release (quantal content), without a change in quantal size (mEPSC amplitude), compensates for altered muscle excitation. Because morphological synaptic growth is normal, we conclude that a homeostatic increase in presynaptic release compensates for impaired muscle excitability. These data demonstrate that a monitor of muscle membrane depolarization is sufficient to initiate synaptic homeostatic compensation.
Similar articles
- Involvement of hyperpolarization-activated cation channels in synaptic modulation.
Genlain M, Godaux E, Ris L. Genlain M, et al. Neuroreport. 2007 Aug 6;18(12):1231-5. doi: 10.1097/WNR.0b013e32821c538f. Neuroreport. 2007. PMID: 17632273 - Non-quantal acetylcholine release at the neuromuscular junction.
Vyskocil F, Malomouzh AI, Nikolsky EE. Vyskocil F, et al. Physiol Res. 2009;58(6):763-784. doi: 10.33549/physiolres.931865. Physiol Res. 2009. PMID: 20059289 Review. - Homeostatic regulation of glutamate release in response to depolarization.
Moulder KL, Meeks JP, Mennerick S. Moulder KL, et al. Mol Neurobiol. 2006 Apr;33(2):133-53. doi: 10.1385/MN:33:2:133. Mol Neurobiol. 2006. PMID: 16603793 Review.
Cited by
- The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations.
Ueda A, Wu CF. Ueda A, et al. Front Cell Neurosci. 2015 Feb 2;9:10. doi: 10.3389/fncel.2015.00010. eCollection 2015. Front Cell Neurosci. 2015. PMID: 25698925 Free PMC article. - Opposing chemosensory functions of closely related gustatory receptors.
Ahn JE, Amrein H. Ahn JE, et al. Elife. 2023 Dec 7;12:RP89795. doi: 10.7554/eLife.89795. Elife. 2023. PMID: 38060294 Free PMC article. - Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene.
Mee CJ, Pym EC, Moffat KG, Baines RA. Mee CJ, et al. J Neurosci. 2004 Oct 6;24(40):8695-703. doi: 10.1523/JNEUROSCI.2282-04.2004. J Neurosci. 2004. PMID: 15470135 Free PMC article. - Investigation of synapse formation and function in a glutamatergic-GABAergic two-neuron microcircuit.
Chang CL, Trimbuch T, Chao HT, Jordan JC, Herman MA, Rosenmund C. Chang CL, et al. J Neurosci. 2014 Jan 15;34(3):855-68. doi: 10.1523/JNEUROSCI.0229-13.2014. J Neurosci. 2014. PMID: 24431444 Free PMC article. - Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse.
Halstead JM, Lin YQ, Durraine L, Hamilton RS, Ball G, Neely GG, Bellen HJ, Davis I. Halstead JM, et al. Biol Open. 2014 Aug 29;3(9):839-49. doi: 10.1242/bio.20149027. Biol Open. 2014. PMID: 25171887 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous