Soft lithography in biology and biochemistry - PubMed (original) (raw)
Review
Soft lithography in biology and biochemistry
G M Whitesides et al. Annu Rev Biomed Eng. 2001.
Abstract
Soft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in basrelief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (> or = 50 microns), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.
Similar articles
- Fabrication of aligned microstructures with a single elastomeric stamp.
Tien J, Nelson CM, Chen CS. Tien J, et al. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1758-62. doi: 10.1073/pnas.042493399. Epub 2002 Feb 12. Proc Natl Acad Sci U S A. 2002. PMID: 11842197 Free PMC article. - Emergent Soft Lithographic Tools for the Fabrication of Functional Polymeric Microstructures.
Rose MA, Bowen JJ, Morin SA. Rose MA, et al. Chemphyschem. 2019 Apr 2;20(7):909-925. doi: 10.1002/cphc.201801140. Epub 2019 Mar 12. Chemphyschem. 2019. PMID: 30801856 Review. - Surface engineering approaches to micropattern surfaces for cell-based assays.
Falconnet D, Csucs G, Grandin HM, Textor M. Falconnet D, et al. Biomaterials. 2006 Jun;27(16):3044-63. doi: 10.1016/j.biomaterials.2005.12.024. Epub 2006 Feb 3. Biomaterials. 2006. PMID: 16458351 Review. - Combining microscience and neurobiology.
Weibel DB, Garstecki P, Whitesides GM. Weibel DB, et al. Curr Opin Neurobiol. 2005 Oct;15(5):560-7. doi: 10.1016/j.conb.2005.08.013. Curr Opin Neurobiol. 2005. PMID: 16150585 Review.
Cited by
- Microscale Strategies for Generating Cell-Encapsulating Hydrogels.
Selimović S, Oh J, Bae H, Dokmeci M, Khademhosseini A. Selimović S, et al. Polymers (Basel). 2012 Sep;4(3):1554. doi: 10.3390/polym4031554. Polymers (Basel). 2012. PMID: 23626908 Free PMC article. - Mechanical force-induced morphology changes in a human fungal pathogen.
Puerner C, Kukhaleishvili N, Thomson D, Schaub S, Noblin X, Seminara A, Bassilana M, Arkowitz RA. Puerner C, et al. BMC Biol. 2020 Sep 11;18(1):122. doi: 10.1186/s12915-020-00833-0. BMC Biol. 2020. PMID: 32912212 Free PMC article. - Assays to measure nuclear mechanics in interphase cells.
Isermann P, Davidson PM, Sliz JD, Lammerding J. Isermann P, et al. Curr Protoc Cell Biol. 2012 Sep;Chapter 22:Unit22.16. doi: 10.1002/0471143030.cb2216s56. Curr Protoc Cell Biol. 2012. PMID: 22968843 Free PMC article. - Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.
Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M. Müller M, et al. J Vis Exp. 2013 Jul 10;(77):e50632. doi: 10.3791/50632. J Vis Exp. 2013. PMID: 23892955 Free PMC article. - Sensing photosynthetic herbicides in an electrochemical flow cell.
Szabó T, Csekő R, Hajdu K, Nagy K, Sipos O, Galajda P, Garab G, Nagy L. Szabó T, et al. Photosynth Res. 2017 May;132(2):127-134. doi: 10.1007/s11120-016-0314-2. Epub 2016 Oct 5. Photosynth Res. 2017. PMID: 27709414
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials