Identification and analysis of Staphylococcus aureus components expressed by a model system of growth in serum - PubMed (original) (raw)
Identification and analysis of Staphylococcus aureus components expressed by a model system of growth in serum
M D Wiltshire et al. Infect Immun. 2001 Aug.
Abstract
A model system mimicking Staphylococcus aureus bacteremia was developed by growth in serum under microaerobic conditions. Eight genes induced by growth in serum were identified, including an antimicrobial peptide biosynthesis locus, amino acid biosynthetic loci, and genes encoding putative surface proteins. Nine independent insertions were found in the major lysine biosynthesis operon, which encodes eight genes, is repressed by lysine in vitro, and is expressed in vivo.
Figures
FIG. 1
Diagrammatic representation of the dap_operon of S. aureus, showing the sequenced regions cloned in pSEG10 and pMTOPO9 and those cloned to generate the_lacZ transcriptional fusion strains. Shaded genes are putatively involved in lysine biosynthesis. Tn_917_insertions from left to right: aspartokinase II (lysC) control-leader region (putative)—_seg_22 (siblings_seg_30 and _seg_33); aspartokinase II (lysC)—_seg_14, _seg_25 (bottom, sibling _seg_50), _seg_45 (top, sibling _seg_48), _seg_13, and_seg_1 (sibling _seg_21); aspartate semialdehyde dehydrogenase (asd)—_seg_24 and _seg_26; and dihydrodipicolinate synthase (dapA)—_seg_10. ABC, ATP-binding cassette.
FIG. 2
Expression of lysC, asd, and_dapA_ in different chemically defined media (CDM). Shown is analysis of transcription (closed symbols) of_lysC_::lacZ (MDW41) (diamonds),asd::lacZ (MDW42) (circles), and dapA::lacZ (MDW43) (triangles). Basal CDM was prepared without the aspartate family amino acids (lysine [Lys], methionine [Met], threonine [Thr], and isoleucine [Ile]). Supplements to 100 mg of Lys and Met per liter and to 150 mg of Thr and Ile per liter were added as follows: a, none; b, Lys, Met, Thr, and Ile; c, Lys; and d, Met, Thr, and Ile. A representative growth curve (MDW41) is shown on each graph (OD600 [open squares]). MUG, methylumbelliferyl-β-
d
-galactoside.
Similar articles
- PheP, a putative amino acid permease of Staphylococcus aureus, contributes to survival in vivo and during starvation.
Horsburgh MJ, Wiltshire MD, Crossley H, Ingham E, Foster SJ. Horsburgh MJ, et al. Infect Immun. 2004 May;72(5):3073-6. doi: 10.1128/IAI.72.5.3073-3076.2004. Infect Immun. 2004. PMID: 15102825 Free PMC article. - Lysine and Threonine Biosynthesis from Aspartate Contributes to Staphylococcus aureus Growth in Calf Serum.
Oogai Y, Yamaguchi M, Kawada-Matsuo M, Sumitomo T, Kawabata S, Komatsuzawa H. Oogai Y, et al. Appl Environ Microbiol. 2016 Sep 30;82(20):6150-6157. doi: 10.1128/AEM.01399-16. Print 2016 Oct 15. Appl Environ Microbiol. 2016. PMID: 27520813 Free PMC article. - Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus.
Yarwood JM, McCormick JK, Schlievert PM. Yarwood JM, et al. J Bacteriol. 2001 Feb;183(4):1113-23. doi: 10.1128/JB.183.4.1113-1123.2001. J Bacteriol. 2001. PMID: 11157922 Free PMC article. - Regulation of agr-dependent virulence genes in Staphylococcus aureus by RNAIII from coagulase-negative staphylococci.
Tegmark K, Morfeldt E, Arvidson S. Tegmark K, et al. J Bacteriol. 1998 Jun;180(12):3181-6. doi: 10.1128/JB.180.12.3181-3186.1998. J Bacteriol. 1998. PMID: 9620969 Free PMC article. - Synthesis and function of phospholipids in Staphylococcus aureus.
Kuhn S, Slavetinsky CJ, Peschel A. Kuhn S, et al. Int J Med Microbiol. 2015 Feb;305(2):196-202. doi: 10.1016/j.ijmm.2014.12.016. Epub 2014 Dec 23. Int J Med Microbiol. 2015. PMID: 25595024 Review.
Cited by
- Potential Influence of Staphylococcus aureus Clonal Complex 30 Genotype and Transcriptome on Hematogenous Infections.
Sharma-Kuinkel BK, Mongodin EF, Myers JR, Vore KL, Canfield GS, Fraser CM, Rude TH, Fowler VG Jr, Gill SR. Sharma-Kuinkel BK, et al. Open Forum Infect Dis. 2015 Jun 24;2(3):ofv093. doi: 10.1093/ofid/ofv093. eCollection 2015 Sep. Open Forum Infect Dis. 2015. PMID: 26213692 Free PMC article. - Identification of immunogenic and serum binding proteins of Staphylococcus epidermidis.
Sellman BR, Howell AP, Kelly-Boyd C, Baker SM. Sellman BR, et al. Infect Immun. 2005 Oct;73(10):6591-600. doi: 10.1128/IAI.73.10.6591-6600.2005. Infect Immun. 2005. PMID: 16177335 Free PMC article. - Lipidomic and Ultrastructural Characterization of the Cell Envelope of Staphylococcus aureus Grown in the Presence of Human Serum.
Hines KM, Alvarado G, Chen X, Gatto C, Pokorny A, Alonzo F 3rd, Wilkinson BJ, Xu L. Hines KM, et al. mSphere. 2020 Jun 17;5(3):e00339-20. doi: 10.1128/mSphere.00339-20. mSphere. 2020. PMID: 32554713 Free PMC article. - DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus.
Cui L, Lian JQ, Neoh HM, Reyes E, Hiramatsu K. Cui L, et al. Antimicrob Agents Chemother. 2005 Aug;49(8):3404-13. doi: 10.1128/AAC.49.8.3404-3413.2005. Antimicrob Agents Chemother. 2005. PMID: 16048954 Free PMC article. - Functional blocking of Staphylococcus aureus adhesins following growth in ex vivo media.
Massey RC, Dissanayeke SR, Cameron B, Ferguson D, Foster TJ, Peacock SJ. Massey RC, et al. Infect Immun. 2002 Oct;70(10):5339-45. doi: 10.1128/IAI.70.10.5339-5345.2002. Infect Immun. 2002. PMID: 12228257 Free PMC article.
References
- Chan P F, Foster S J. The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus8325-4. Microbiology. 1998;144:2469–2479. - PubMed
- Coulter S N, Schwan W R, Ng E Y W, Langhorne M H, Ritchie H D, Westbrock-Wadman S, Hufnagle W O, Folger K R, Bayer A S, Stover C K. Staphylococcus aureusgenetic loci impacting growth and survival in multiple infection environments. Mol Microbiol. 1998;30:393–404. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources