Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells - PubMed (original) (raw)
. 2001 Aug;15(8):1344-59.
doi: 10.1210/mend.15.8.0678.
Affiliations
- PMID: 11463858
- DOI: 10.1210/mend.15.8.0678
Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells
A S Oh et al. Mol Endocrinol. 2001 Aug.
Abstract
ERalpha-negative breast tumors tend to overexpress growth factor receptors such as epidermal growth factor receptor or c-erbB-2. Raf-1 is a key intermediate in the signal transduction pathways of these receptors. High levels of constitutive Raf kinase (Deltaraf) activity imparts ERalpha- positive MCF-7 breast cancer cells with the ability to grow in the absence of estrogen. Deltaraf transfectants maintained in estrogen-depleted media showed greatly diminished responses to 17beta-estradiol or the pure antiestrogen ICI 182,780. Western blotting, ligand binding, and immunohistochemistry assays revealed a loss of ERalpha protein expression, and ribonuclease protection assays indicated that this correlated with loss of ERalpha message. In examining the basal expression of estrogen-induced genes in the stable transfectants or in transient cotransfection assays with an estrogen-response element- reporter construct and Deltaraf or constitutively active MAPK kinase (DeltaMEK), no ligand- independent activation of ERalpha was observed. Transient expression of Deltaraf and double-label immunostaining showed ERalpha was lost in those cells that transiently expressed Deltaraf. Abrogation of Raf signaling via treatment with the MEK inhibitors PD 098059 or U0126 resulted in reexpression of ERalpha. Similar studies performed with MCF-7 cells overexpressing epidermal growth factor receptor or c-erbB-2 confirmed that hyperactivation of MAPK resulted in down-regulation of ERalpha that was reversible by MEK inhibition or transfection with dominant negative ERK1 and ERK2 constructs. These data suggest that the hyperactivation of MAPK in epidermal growth factor receptor- or c-erbB-2-overexpressing breast cancer cells is directly responsible for generation of an ERalpha-negative phenotype and, more importantly, that this process may be abrogated by inhibiting these pathways, thus restoring ERalpha expression.
Similar articles
- Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response.
Bayliss J, Hilger A, Vishnu P, Diehl K, El-Ashry D. Bayliss J, et al. Clin Cancer Res. 2007 Dec 1;13(23):7029-36. doi: 10.1158/1078-0432.CCR-07-0587. Clin Cancer Res. 2007. PMID: 18056179 - Prolonged extracellular signal-regulated kinase 1/2 activation during fibroblast growth factor 1- or heregulin beta1-induced antiestrogen-resistant growth of breast cancer cells is resistant to mitogen-activated protein/extracellular regulated kinase kinase inhibitors.
Thottassery JV, Sun Y, Westbrook L, Rentz SS, Manuvakhova M, Qu Z, Samuel S, Upshaw R, Cunningham A, Kern FG. Thottassery JV, et al. Cancer Res. 2004 Jul 1;64(13):4637-47. doi: 10.1158/0008-5472.CAN-03-2645. Cancer Res. 2004. PMID: 15231676 - ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers.
Brinkman JA, El-Ashry D. Brinkman JA, et al. J Mammary Gland Biol Neoplasia. 2009 Mar;14(1):67-78. doi: 10.1007/s10911-009-9113-0. Epub 2009 Mar 5. J Mammary Gland Biol Neoplasia. 2009. PMID: 19263197 Review. - Adaptation to estradiol deprivation causes up-regulation of growth factor pathways and hypersensitivity to estradiol in breast cancer cells.
Santen RJ, Song RX, Masamura S, Yue W, Fan P, Sogon T, Hayashi S, Nakachi K, Eguchi H. Santen RJ, et al. Adv Exp Med Biol. 2008;630:19-34. doi: 10.1007/978-0-387-78818-0_2. Adv Exp Med Biol. 2008. PMID: 18637482 Free PMC article. Review.
Cited by
- Mechanisms of aromatase inhibitor resistance.
Ma CX, Reinert T, Chmielewska I, Ellis MJ. Ma CX, et al. Nat Rev Cancer. 2015 May;15(5):261-75. doi: 10.1038/nrc3920. Nat Rev Cancer. 2015. PMID: 25907219 Review. - The HER2 Signaling Network in Breast Cancer--Like a Spider in its Web.
Dittrich A, Gautrey H, Browell D, Tyson-Capper A. Dittrich A, et al. J Mammary Gland Biol Neoplasia. 2014 Dec;19(3-4):253-70. doi: 10.1007/s10911-014-9329-5. Epub 2014 Dec 28. J Mammary Gland Biol Neoplasia. 2014. PMID: 25544707 Review. - Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen.
Mendes-Pereira AM, Sims D, Dexter T, Fenwick K, Assiotis I, Kozarewa I, Mitsopoulos C, Hakas J, Zvelebil M, Lord CJ, Ashworth A. Mendes-Pereira AM, et al. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2730-5. doi: 10.1073/pnas.1018872108. Epub 2011 Apr 11. Proc Natl Acad Sci U S A. 2012. PMID: 21482774 Free PMC article. - Expression and clinical significance of MAPK and EGFR in triple-negative breast cancer.
Jiang W, Wang X, Zhang C, Xue L, Yang L. Jiang W, et al. Oncol Lett. 2020 Mar;19(3):1842-1848. doi: 10.3892/ol.2020.11274. Epub 2020 Jan 9. Oncol Lett. 2020. PMID: 32194678 Free PMC article. - A 3'-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis.
Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, Dorairaj J, Geyda K, Pelletier C, Nallur S, Martens JW, Hooning MJ, Kerin M, Zelterman D, Zhu Y, Tuck D, Harris L, Miller N, Slack F, Weidhaas J. Paranjape T, et al. Lancet Oncol. 2011 Apr;12(4):377-86. doi: 10.1016/S1470-2045(11)70044-4. Epub 2011 Mar 22. Lancet Oncol. 2011. PMID: 21435948 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous