The visual ecology of avian photoreceptors - PubMed (original) (raw)
Review
The visual ecology of avian photoreceptors
N S Hart. Prog Retin Eye Res. 2001 Sep.
Abstract
The spectral sensitivities of avian retinal photoreceptors are examined with respect to microspectrophotometric measurements of single cells, spectrophotometric measurements of extracted or in vitro regenerated visual pigments, and molecular genetic analyses of visual pigment opsin protein sequences. Bird species from diverse orders are compared in relation to their evolution, their habitats and the multiplicity of visual tasks they must perform. Birds have five different types of visual pigment and seven different types of photoreceptor-rods, double (uneven twin) cones and four types of single cone. The spectral locations of the wavelengths of maximum absorbance (lambda(max)) of the different visual pigments, and the spectral transmittance characteristics of the intraocular spectral filters (cone oil droplets) that also determine photoreceptor spectral sensitivity, vary according to both habitat and phylogenetic relatedness. The primary influence on avian retinal design appears to be the range of wavelengths available for vision, regardless of whether that range is determined by the spectral distribution of the natural illumination or the spectral transmittance of the ocular media (cornea, aqueous humour, lens, vitreous humour). Nevertheless, other variations in spectral sensitivity exist that reflect the variability and complexity of avian visual ecology.
Similar articles
- Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo).
Hart NS, Partridge JC, Cuthill IC. Hart NS, et al. Vision Res. 1999 Oct;39(20):3321-8. doi: 10.1016/s0042-6989(99)00071-1. Vision Res. 1999. PMID: 10615498 - Vision in the peafowl (Aves: Pavo cristatus).
Hart NS. Hart NS. J Exp Biol. 2002 Dec;205(Pt 24):3925-35. doi: 10.1242/jeb.205.24.3925. J Exp Biol. 2002. PMID: 12432014 - Vertebrate photoreceptors.
Ebrey T, Koutalos Y. Ebrey T, et al. Prog Retin Eye Res. 2001 Jan;20(1):49-94. doi: 10.1016/s1350-9462(00)00014-8. Prog Retin Eye Res. 2001. PMID: 11070368 Review. - The ecology of visual pigments.
Bowmaker JK. Bowmaker JK. Novartis Found Symp. 1999;224:21-31; discussion 31-5. doi: 10.1002/9780470515693.ch3. Novartis Found Symp. 1999. PMID: 10614044 Review.
Cited by
- Color vision of the budgerigar (Melopsittacus undulatus): hue matches, tetrachromacy, and intensity discrimination.
Goldsmith TH, Butler BK. Goldsmith TH, et al. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Oct;191(10):933-51. doi: 10.1007/s00359-005-0024-2. Epub 2005 Sep 29. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005. PMID: 16086150 - Ultraviolet-sensitive vision in long-lived birds.
Carvalho LS, Knott B, Berg ML, Bennett AT, Hunt DM. Carvalho LS, et al. Proc Biol Sci. 2011 Jan 7;278(1702):107-14. doi: 10.1098/rspb.2010.1100. Epub 2010 Jul 28. Proc Biol Sci. 2011. PMID: 20667872 Free PMC article. - Multiple UV reflectance peaks in the iridescent neck feathers of pigeons.
McGraw KJ. McGraw KJ. Naturwissenschaften. 2004 Mar;91(3):125-9. doi: 10.1007/s00114-003-0498-0. Epub 2004 Jan 22. Naturwissenschaften. 2004. PMID: 15034662 - Disruptive coloration, crypsis and edge detection in early visual processing.
Stevens M, Cuthill IC. Stevens M, et al. Proc Biol Sci. 2006 Sep 7;273(1598):2141-7. doi: 10.1098/rspb.2006.3556. Proc Biol Sci. 2006. PMID: 16901833 Free PMC article. - How do complex animal signals evolve?
Eliason CM. Eliason CM. PLoS Biol. 2018 Dec 17;16(12):e3000093. doi: 10.1371/journal.pbio.3000093. eCollection 2018 Dec. PLoS Biol. 2018. PMID: 30557344 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources