Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for the brain - PubMed (original) (raw)
Review
. 2001 Apr-Jun;16(2-3):159-65; discussion 215-21.
doi: 10.1385/JMN:16:2-3:159.
Affiliations
- PMID: 11478370
- DOI: 10.1385/JMN:16:2-3:159
Review
Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for the brain
A A Spector. J Mol Neurosci. 2001 Apr-Jun.
Abstract
Polyunsaturated fatty acids (PUFA), which comprise 25-30% of the fatty acids in the human brain, are necessary for normal brain development and function. PUFA cannot be synthesized de novo and must be supplied to the brain by the plasma. It is necessary to know the PUFA content and composition of the various plasma lipids and lipoproteins in order to understand how these fatty acids are taken up and metabolized by the brain. Human plasma free fatty acid (FFA) ordinarily contains about 15% linoleic acid (18:2n-6) and 1% arachidonic acid (AA) (20:4n-6). Plasma triglycerides, phospholipids, and cholesterol esters also are rich in linoleic acid, and the phospholipids and cholesterol esters contain about 10% AA. These findings suggest that the brain probably can obtain an adequate supply of n-6 PUFA from either the plasma FFA or lipoproteins. By contrast, the plasma ordinarily contains only one-tenth as much n-3 PUFA, and the amounts range from 1% alpha-linolenic acid (18:3n-3) in the plasma FFA to 2% docosahexaenoic acid (22:6n-3, DHA) in the plasma phospholipids. The main n-3 PUFA in the brain is DHA. Therefore, if the plasma FFA is the primary source of fatty acid for the brain, much of the DHA must be synthesized in the brain from n-3 PUFA precursors. Alternatively, if the brain requires large amounts of preformed DHA, the phospholipids contained in plasma lipoproteins are the most likely source.
Similar articles
- Effect of different levels of docosahexaenoic acid supply on fatty acid status and linoleic and α-linolenic acid conversion in preterm infants.
Sauerwald UC, Fink MM, Demmelmair H, Schoenaich PV, Rauh-Pfeiffer AA, Koletzko B. Sauerwald UC, et al. J Pediatr Gastroenterol Nutr. 2012 Mar;54(3):353-63. doi: 10.1097/MPG.0b013e31823c3bfd. J Pediatr Gastroenterol Nutr. 2012. PMID: 22008957 Clinical Trial. - Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.
Gibson RA, Neumann MA, Lien EL, Boyd KA, Tu WC. Gibson RA, et al. Prostaglandins Leukot Essent Fatty Acids. 2013 Jan;88(1):139-46. doi: 10.1016/j.plefa.2012.04.003. Epub 2012 Apr 17. Prostaglandins Leukot Essent Fatty Acids. 2013. PMID: 22515943 - Gestational diabetes mellitus decreased umbilical cord blood polyunsaturated fatty acids: a meta-analysis of observational studies.
Hai-Tao Y, Zhi-Heng G, Yi-Ru C, Yue-Ting L, Hai-Ying Z, Ya-Juan L, Lin X. Hai-Tao Y, et al. Prostaglandins Leukot Essent Fatty Acids. 2021 Aug;171:102318. doi: 10.1016/j.plefa.2021.102318. Epub 2021 Jul 2. Prostaglandins Leukot Essent Fatty Acids. 2021. PMID: 34246926 Review. - Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications.
Lohner S, Fekete K, Marosvölgyi T, Decsi T. Lohner S, et al. Ann Nutr Metab. 2013;62(2):98-112. doi: 10.1159/000345599. Epub 2013 Jan 11. Ann Nutr Metab. 2013. PMID: 23327902 Review.
Cited by
- Close encounters of the oily kind: regulation of transporters by lipids.
Divito CB, Amara SG. Divito CB, et al. Mol Interv. 2009 Oct;9(5):252-62. doi: 10.1124/mi.9.5.8. Mol Interv. 2009. PMID: 19828832 Free PMC article. Review. - Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease.
Palacios-Pelaez R, Lukiw WJ, Bazan NG. Palacios-Pelaez R, et al. Mol Neurobiol. 2010 Jun;41(2-3):367-74. doi: 10.1007/s12035-010-8139-z. Epub 2010 May 14. Mol Neurobiol. 2010. PMID: 20467837 Review. - Omega-3 Supplementation and Heart Disease: A Population-Based Diet by Gene Analysis of Clinical Trial Outcomes.
Fernandez ML, Blomquist SA, Hallmark B, Chilton FH. Fernandez ML, et al. Nutrients. 2021 Jun 23;13(7):2154. doi: 10.3390/nu13072154. Nutrients. 2021. PMID: 34201625 Free PMC article. Review. - Impact of Amerind ancestry and FADS genetic variation on omega-3 deficiency and cardiometabolic traits in Hispanic populations.
Yang C, Hallmark B, Chai JC, O'Connor TD, Reynolds LM, Wood AC, Seeds M, Chen YI, Steffen LM, Tsai MY, Kaplan RC, Daviglus ML, Mandarino LJ, Fretts AM, Lemaitre RN, Coletta DK, Blomquist SA, Johnstone LM, Tontsch C, Qi Q, Ruczinski I, Rich SS, Mathias RA, Chilton FH, Manichaikul A. Yang C, et al. Commun Biol. 2021 Jul 28;4(1):918. doi: 10.1038/s42003-021-02431-4. Commun Biol. 2021. PMID: 34321601 Free PMC article. - Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease.
Pifferi F, Laurent B, Plourde M. Pifferi F, et al. Front Physiol. 2021 Mar 30;12:645646. doi: 10.3389/fphys.2021.645646. eCollection 2021. Front Physiol. 2021. PMID: 33868013 Free PMC article. Review.
References
- J Cell Biol. 1997 Aug 25;138(4):877-89 - PubMed
- J Lipid Res. 1981 Jan;22(1):1-6 - PubMed
- Clin Exp Metastasis. 1993 Mar;11(2):141-9 - PubMed
- Lipids. 1996 Dec;31(12):1283-8 - PubMed
- Biochim Biophys Acta. 1992 Dec 10;1180(2):147-62 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources