Cell age-related monovalent cations content and density changes in stored human erythrocytes - PubMed (original) (raw)

G Minetti et al. Biochim Biophys Acta. 2001.

Abstract

Conversion of erythrocyte membrane protein 4.1b to 4.1a occurs through a non-enzymatic deamidation reaction in most mammalian erythrocytes, with an in vivo half-life of approximately 41 days, making the 4.1a/4.1b ratio a useful index of red cell age [Inaba and Maede, Biochim. Biophys. Acta 944 (1988) 256-264]. Normal human erythrocytes distribute into subpopulations of increasing cell density and cell age when centrifuged in polyarabinogalactan density gradients. We have observed that, when erythrocytes were stored at 4 degrees C under standard blood bank conditions, the deamidation was virtually undetectable, as cells maintained the 4.1a/4.1b ratio they displayed at the onset of storage. By measuring the 4.1a/4.1b values in subpopulations of cells of different density at various time points during storage, a modification of the normal 'cell age/cell density' relationship was observed, as erythrocytes were affected by changes in cell volume in an age-dependent manner. This may stem from a different impact of storage on the imbalance of monovalent cations, Na(+) and K(+), in young and old erythrocytes, related to their different complement of cation transporters.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances