Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition - PubMed (original) (raw)
. 2001 Aug 10;293(5532):1159-63.
doi: 10.1126/science.1060342.
Affiliations
- PMID: 11498596
- DOI: 10.1126/science.1060342
Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition
F Pouille et al. Science. 2001.
Abstract
The temporal resolution of neuronal integration depends on the time window within which excitatory inputs summate to reach the threshold for spike generation. Here, we show that in rat hippocampal pyramidal cells this window is very narrow (less than 2 milliseconds). This narrowness results from the short delay with which disynaptic feed-forward inhibition follows monosynaptic excitation. Simultaneous somatic and dendritic recordings indicate that feed-forward inhibition is much stronger in the soma than in the dendrites, resulting in a broader integration window in the latter compartment. Thus, the subcellular partitioning of feed-forward inhibition enforces precise coincidence detection in the soma, while allowing dendrites to sum incoming activity over broader time windows.
Similar articles
- Identified sources and targets of slow inhibition in the neocortex.
Tamás G, Lorincz A, Simon A, Szabadics J. Tamás G, et al. Science. 2003 Mar 21;299(5614):1902-5. doi: 10.1126/science.1082053. Science. 2003. PMID: 12649485 - Temporal overlap of excitatory and inhibitory afferent input in guinea-pig CA1 pyramidal cells.
Karnup S, Stelzer A. Karnup S, et al. J Physiol. 1999 Apr 15;516 ( Pt 2)(Pt 2):485-504. doi: 10.1111/j.1469-7793.1999.0485v.x. J Physiol. 1999. PMID: 10087347 Free PMC article. - GABA actions in hippocampal area CA3 during postnatal development: differential shift from depolarizing to hyperpolarizing in somatic and dendritic compartments.
Romo-Parra H, Treviño M, Heinemann U, Gutiérrez R. Romo-Parra H, et al. J Neurophysiol. 2008 Mar;99(3):1523-34. doi: 10.1152/jn.01074.2007. Epub 2008 Jan 23. J Neurophysiol. 2008. PMID: 18216229 - Neuronal microcircuits: frequency-dependent flow of inhibition.
Mittmann W, Chadderton P, Häusser M. Mittmann W, et al. Curr Biol. 2004 Oct 5;14(19):R837-9. doi: 10.1016/j.cub.2004.09.036. Curr Biol. 2004. PMID: 15458661 Review. - Feed-forward inhibition in the hippocampal formation.
Buzsáki G. Buzsáki G. Prog Neurobiol. 1984;22(2):131-53. doi: 10.1016/0301-0082(84)90023-6. Prog Neurobiol. 1984. PMID: 6433403 Review.
Cited by
- Thalamic microcircuits: presynaptic dendrites form two feedforward inhibitory pathways in thalamus.
Crandall SR, Cox CL. Crandall SR, et al. J Neurophysiol. 2013 Jul;110(2):470-80. doi: 10.1152/jn.00559.2012. Epub 2013 Apr 24. J Neurophysiol. 2013. PMID: 23615551 Free PMC article. - Circuit motifs for contrast-adaptive differentiation in early sensory systems: the role of presynaptic inhibition and short-term plasticity.
Zhang D, Wu S, Rasch MJ. Zhang D, et al. PLoS One. 2015 Feb 27;10(2):e0118125. doi: 10.1371/journal.pone.0118125. eCollection 2015. PLoS One. 2015. PMID: 25723493 Free PMC article. - Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review.
Wingert JC, Sorg BA. Wingert JC, et al. Front Synaptic Neurosci. 2021 May 10;13:673210. doi: 10.3389/fnsyn.2021.673210. eCollection 2021. Front Synaptic Neurosci. 2021. PMID: 34040511 Free PMC article. - Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity.
Hull C, Regehr WG. Hull C, et al. Neuron. 2012 Jan 12;73(1):149-58. doi: 10.1016/j.neuron.2011.10.030. Neuron. 2012. PMID: 22243753 Free PMC article. - Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo.
Bienvenu TC, Busti D, Magill PJ, Ferraguti F, Capogna M. Bienvenu TC, et al. Neuron. 2012 Jun 21;74(6):1059-74. doi: 10.1016/j.neuron.2012.04.022. Neuron. 2012. PMID: 22726836 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources