Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map - PubMed (original) (raw)
Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map
C Grefkes et al. Neuroimage. 2001 Sep.
Abstract
We analyzed the topographical variability of human somatosensory area 2 in 10 postmortem brains. The brains were serially sectioned at 20 microm, and sections were stained for cell bodies. Area 2 was delineated with an observer-independent technique based on significant differences in the laminar densities of cell bodies. The sections were corrected with an MR scan of the same brain obtained before histological processing. Each brain's histological volume and representation of area 2 was subsequently reconstructed in 3-D. We found that the borders of area 2 are topographically variable. The rostral border lies between the convexity of the postcentral gyrus and some millimeters deep in the rostral wall of the postcentral sulcus. The caudal border lies between the fundus of the postcentral sulcus and some millimeters above it in the rostral wall. In contrast to Brodmann's map, area 2 does not extend onto the mesial cortical surface or into the intraparietal sulcus. When the postcentral sulcus is interrupted by a gyral bridge, area 2 crosses this bridge and is not separated into two segments. After cytoarchitectonic analysis, the histological volumes were warped to the reference brain of a computerized atlas and superimposed. A population map was generated in 3-D space, which describes how many brains have a representation of area 2 in a particular voxel. This microstructurally defined population map can be used to demonstrate activations of area 2 in functional imaging studies and therefore help to further understand the role of area 2 in somatosensory processing.
Copyright 2001 Academic Press.
Similar articles
- Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space.
Geyer S, Schormann T, Mohlberg H, Zilles K. Geyer S, et al. Neuroimage. 2000 Jun;11(6 Pt 1):684-96. doi: 10.1006/nimg.2000.0548. Neuroimage. 2000. PMID: 10860796 - Integration of microstructural and functional aspects of human somatosensory areas 3a, 3b, and 1 on the basis of a computerized brain atlas.
Geyer S, Schleicher A, Schormann T, Mohlberg H, Bodegård A, Roland PE, Zilles K. Geyer S, et al. Anat Embryol (Berl). 2001 Oct;204(4):351-66. doi: 10.1007/s004290100200. Anat Embryol (Berl). 2001. PMID: 11720238 - The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability.
Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K. Caspers S, et al. Neuroimage. 2006 Nov 1;33(2):430-48. doi: 10.1016/j.neuroimage.2006.06.054. Epub 2006 Sep 1. Neuroimage. 2006. PMID: 16949304 - The microstructural border between the motor and the cognitive domain in the human cerebral cortex.
Geyer S. Geyer S. Adv Anat Embryol Cell Biol. 2004;174:I-VIII, 1-89. doi: 10.1007/978-3-642-18910-4. Adv Anat Embryol Cell Biol. 2004. PMID: 14750415 Review. - Advances in cytoarchitectonic mapping of the human cerebral cortex.
Amunts K, Zilles K. Amunts K, et al. Neuroimaging Clin N Am. 2001 May;11(2):151-69, vii. Neuroimaging Clin N Am. 2001. PMID: 11489732 Review.
Cited by
- Differential grey matter changes in sensorimotor cortex related to exceptional fine motor skills.
Stoeckel MC, Morgenroth F, Buetefisch CM, Seitz RJ. Stoeckel MC, et al. PLoS One. 2012;7(12):e51900. doi: 10.1371/journal.pone.0051900. Epub 2012 Dec 26. PLoS One. 2012. PMID: 23300575 Free PMC article. - The scent of salience--is there olfactory-trigeminal conditioning in humans?
Moessnang C, Pauly K, Kellermann T, Krämer J, Finkelmeyer A, Hummel T, Siegel SJ, Schneider F, Habel U. Moessnang C, et al. Neuroimage. 2013 Aug 15;77:93-104. doi: 10.1016/j.neuroimage.2013.03.049. Epub 2013 Apr 2. Neuroimage. 2013. PMID: 23558094 Free PMC article. - Enhanced effectiveness in visuo-haptic object-selective brain regions with increasing stimulus salience.
Kim S, James TW. Kim S, et al. Hum Brain Mapp. 2010 May;31(5):678-93. doi: 10.1002/hbm.20897. Hum Brain Mapp. 2010. PMID: 19830683 Free PMC article. - Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing.
Kaas A, Goebel R, Valente G, Sorger B. Kaas A, et al. Front Hum Neurosci. 2019 Dec 5;13:427. doi: 10.3389/fnhum.2019.00427. eCollection 2019. Front Hum Neurosci. 2019. PMID: 31920588 Free PMC article. - Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex.
Cerliani L, Thomas RM, Jbabdi S, Siero JC, Nanetti L, Crippa A, Gazzola V, D'Arceuil H, Keysers C. Cerliani L, et al. Hum Brain Mapp. 2012 Sep;33(9):2005-34. doi: 10.1002/hbm.21338. Epub 2011 Jul 14. Hum Brain Mapp. 2012. PMID: 21761507 Free PMC article.