From stones to bones: the biology of ClC chloride channels - PubMed (original) (raw)
Review
. 2001 Aug 7;11(15):R620-8.
doi: 10.1016/s0960-9822(01)00368-2.
Affiliations
- PMID: 11516971
- DOI: 10.1016/s0960-9822(01)00368-2
Free article
Review
From stones to bones: the biology of ClC chloride channels
A L George Jr et al. Curr Biol. 2001.
Free article
Abstract
Chloride (Cl(-)) is the most abundant extracellular anion in multicellular organisms. Passive movement of Cl(-) through membrane ion channels enables several cellular and physiological processes including transepithelial salt transport, electrical excitability, cell volume regulation and acidification of internal and external compartments. One family of proteins mediating Cl(-) permeability, the ClC channels, has emerged as important for all of these biological processes. The importance of ClC channels has in part been realized through studies of inherited human diseases and genetically engineered mice that display a wide range of phenotypes from kidney stones to petrified bones. These recent findings have demonstrated many eclectic functions of ClC channels and have placed Cl(-) channels in the physiological limelight.
Similar articles
- CLC chloride channels and transporters: from genes to protein structure, pathology and physiology.
Jentsch TJ. Jentsch TJ. Crit Rev Biochem Mol Biol. 2008 Jan-Feb;43(1):3-36. doi: 10.1080/10409230701829110. Crit Rev Biochem Mol Biol. 2008. PMID: 18307107 Review. - Cell biology and physiology of CLC chloride channels and transporters.
Stauber T, Weinert S, Jentsch TJ. Stauber T, et al. Compr Physiol. 2012 Jul;2(3):1701-44. doi: 10.1002/cphy.c110038. Compr Physiol. 2012. PMID: 23723021 Review. - CLC chloride channels and transporters.
Jentsch TJ, Neagoe I, Scheel O. Jentsch TJ, et al. Curr Opin Neurobiol. 2005 Jun;15(3):319-25. doi: 10.1016/j.conb.2005.05.002. Curr Opin Neurobiol. 2005. PMID: 15913981 Review. - [Various functions of ClC-type Cl- channels].
Furukawa T. Furukawa T. Nihon Yakurigaku Zasshi. 2003 Nov;122(5):375-83. doi: 10.1254/fpj.122.375. Nihon Yakurigaku Zasshi. 2003. PMID: 14569156 Review. Japanese.
Cited by
- ClC-3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery.
Dai YP, Bongalon S, Hatton WJ, Hume JR, Yamboliev IA. Dai YP, et al. Br J Pharmacol. 2005 May;145(1):5-14. doi: 10.1038/sj.bjp.0706135. Br J Pharmacol. 2005. PMID: 15723096 Free PMC article. - Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids.
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Krämer J, et al. Chem Rev. 2022 Feb 9;122(3):3459-3636. doi: 10.1021/acs.chemrev.1c00746. Epub 2022 Jan 7. Chem Rev. 2022. PMID: 34995461 Free PMC article. Review. - Deletion of a Vibrio cholerae ClC channel results in acid sensitivity and enhanced intestinal colonization.
Ding Y, Waldor MK. Ding Y, et al. Infect Immun. 2003 Jul;71(7):4197-200. doi: 10.1128/IAI.71.7.4197-4200.2003. Infect Immun. 2003. PMID: 12819118 Free PMC article. - Cell cycle- and swelling-induced activation of a Caenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/beta phosphatases.
Rutledge E, Denton J, Strange K. Rutledge E, et al. J Cell Biol. 2002 Aug 5;158(3):435-44. doi: 10.1083/jcb.200204142. Epub 2002 Aug 5. J Cell Biol. 2002. PMID: 12163466 Free PMC article. - Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3-/- mice.
Yamamoto-Mizuma S, Wang GX, Liu LL, Schegg K, Hatton WJ, Duan D, Horowitz TL, Lamb FS, Hume JR. Yamamoto-Mizuma S, et al. J Physiol. 2004 Jun 1;557(Pt 2):439-56. doi: 10.1113/jphysiol.2003.059261. Epub 2004 Mar 12. J Physiol. 2004. PMID: 15020697 Free PMC article.