Natural image statistics and neural representation - PubMed (original) (raw)
Review
Natural image statistics and neural representation
E P Simoncelli et al. Annu Rev Neurosci. 2001.
Abstract
It has long been assumed that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical properties of the signals to which they are exposed. Attneave (1954)Barlow (1961) proposed that information theory could provide a link between environmental statistics and neural responses through the concept of coding efficiency. Recent developments in statistical modeling, along with powerful computational tools, have enabled researchers to study more sophisticated statistical models for visual images, to validate these models empirically against large sets of data, and to begin experimentally testing the efficient coding hypothesis for both individual neurons and populations of neurons.
Similar articles
- Psychophysically tuned divisive normalization approximately factorizes the PDF of natural images.
Malo J, Laparra V. Malo J, et al. Neural Comput. 2010 Dec;22(12):3179-206. doi: 10.1162/NECO_a_00046. Epub 2010 Sep 21. Neural Comput. 2010. PMID: 20858127 - Efficient coding of natural images.
Ma LB, Wu S. Ma LB, et al. Sheng Li Xue Bao. 2011 Oct 25;63(5):463-71. Sheng Li Xue Bao. 2011. PMID: 22002237 Review. - Input-output statistical independence in divisive normalization models of V1 neurons.
Valerio R, Navarro R. Valerio R, et al. Network. 2003 Nov;14(4):733-45. Network. 2003. PMID: 14653500 - A principal components-based method for the detection of neuronal activity maps: application to optical imaging.
Gabbay M, Brennan C, Kaplan E, Sirovich L. Gabbay M, et al. Neuroimage. 2000 Apr;11(4):313-25. doi: 10.1006/nimg.2000.0547. Neuroimage. 2000. PMID: 10725187 - Single neuron studies of inferior temporal cortex.
Gross CG. Gross CG. Neuropsychologia. 2008 Feb 12;46(3):841-52. doi: 10.1016/j.neuropsychologia.2007.11.009. Epub 2007 Nov 21. Neuropsychologia. 2008. PMID: 18155735 Review.
Cited by
- A visual representation of the hand in the resting somatomotor regions of the human brain.
El Rassi Y, Handjaras G, Perciballi C, Leo A, Papale P, Corbetta M, Ricciardi E, Betti V. El Rassi Y, et al. Sci Rep. 2024 Aug 7;14(1):18298. doi: 10.1038/s41598-024-69248-z. Sci Rep. 2024. PMID: 39112629 Free PMC article. - A real-world size organization of object responses in occipitotemporal cortex.
Konkle T, Oliva A. Konkle T, et al. Neuron. 2012 Jun 21;74(6):1114-24. doi: 10.1016/j.neuron.2012.04.036. Neuron. 2012. PMID: 22726840 Free PMC article. - Raman spectroscopic deep learning with signal aggregated representations for enhanced cell phenotype and signature identification.
Lu S, Huang Y, Shen WX, Cao YL, Cai M, Chen Y, Tan Y, Jiang YY, Chen YZ. Lu S, et al. PNAS Nexus. 2024 Jul 3;3(8):pgae268. doi: 10.1093/pnasnexus/pgae268. eCollection 2024 Aug. PNAS Nexus. 2024. PMID: 39192845 Free PMC article. - Attractive and repulsive effects of sensory history concurrently shape visual perception.
Moon J, Kwon OS. Moon J, et al. BMC Biol. 2022 Nov 7;20(1):247. doi: 10.1186/s12915-022-01444-7. BMC Biol. 2022. PMID: 36345010 Free PMC article. - Object Recognition at Higher Regions of the Ventral Visual Stream via Dynamic Inference.
Sorooshyari SK, Sheng H, Poor HV. Sorooshyari SK, et al. Front Comput Neurosci. 2020 Jun 23;14:46. doi: 10.3389/fncom.2020.00046. eCollection 2020. Front Comput Neurosci. 2020. PMID: 32655388 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources