A proteomic view on genome-based signal peptide predictions - PubMed (original) (raw)
. 2001 Sep;11(9):1484-502.
doi: 10.1101/gr.182801.
Affiliations
- PMID: 11544192
- DOI: 10.1101/gr.182801
Free article
A proteomic view on genome-based signal peptide predictions
H Antelmann et al. Genome Res. 2001 Sep.
Free article
Abstract
The availability of complete genome sequences has allowed the prediction of all exported proteins of the corresponding organisms with dedicated algorithms. Even though numerous studies report on genome-based predictions of signal peptides and cell retention signals, they lack a proteomic verification. For example, 180 secretory and 114 lipoprotein signal peptides were predicted recently for the Gram-positive eubacterium Bacillus subtilis. In the present studies, proteomic approaches were used to define the extracellular complement of the B. subtilis secretome. Using different growth conditions and a hyper-secreting mutant, approximately 200 extracellular proteins were visualized by two-dimensional (2D) gel electrophoresis, of which 82 were identified by mass spectrometry. These include 41 proteins that have a potential signal peptide with a type I signal peptidase (SPase) cleavage site, and lack a retention signal. Strikingly, the remaining 41 proteins were predicted previously to be cell associated because of the apparent absence of a signal peptide (22), or the presence of specific cell retention signals in addition to an export signal (19). To test the importance of the five type I SPases and the unique lipoprotein-specific SPase of B. subtilis, the extracellular proteome of (multiple) SPase mutants was analyzed. Surprisingly, only the processing of the polytopic membrane protein YfnI was strongly inhibited in Spase I mutants, showing for the first time that a native eubacterial membrane protein is a genuine Spase I substrate. Furthermore, a mutation affecting lipoprotein modification and processing resulted in the shedding of at least 23 (lipo-)proteins into the medium. In conclusion, our observations show that genome-based predictions reflect the actual composition of the extracellular proteome for approximately 50%. Major problems are currently encountered with the prediction of extracellular proteins lacking signal peptides (including cytoplasmic proteins) and lipoproteins.
Comment in
- Interrelating different types of genomic data, from proteome to secretome: 'oming in on function.
Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. Greenbaum D, et al. Genome Res. 2001 Sep;11(9):1463-8. doi: 10.1101/gr.207401. Genome Res. 2001. PMID: 11544189
Similar articles
- The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium bacillus subtilis. Signal peptidase II is required for the efficient secretion of alpha-amylase, a non-lipoprotein.
Tjalsma H, Kontinen VP, Prágai Z, Wu H, Meima R, Venema G, Bron S, Sarvas M, van Dijl JM. Tjalsma H, et al. J Biol Chem. 1999 Jan 15;274(3):1698-707. doi: 10.1074/jbc.274.3.1698. J Biol Chem. 1999. PMID: 9880550 - Proteomics-based consensus prediction of protein retention in a bacterial membrane.
Tjalsma H, van Dijl JM. Tjalsma H, et al. Proteomics. 2005 Nov;5(17):4472-82. doi: 10.1002/pmic.200402080. Proteomics. 2005. PMID: 16220534 - Active lipoprotein precursors in the Gram-positive eubacterium Lactococcus lactis.
Venema R, Tjalsma H, van Dijl JM, de Jong A, Leenhouts K, Buist G, Venema G. Venema R, et al. J Biol Chem. 2003 Apr 25;278(17):14739-46. doi: 10.1074/jbc.M209857200. Epub 2003 Feb 12. J Biol Chem. 2003. PMID: 12584195 - Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome.
Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM. Tjalsma H, et al. Microbiol Mol Biol Rev. 2004 Jun;68(2):207-33. doi: 10.1128/MMBR.68.2.207-233.2004. Microbiol Mol Biol Rev. 2004. PMID: 15187182 Free PMC article. Review. - Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome.
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Tjalsma H, et al. Microbiol Mol Biol Rev. 2000 Sep;64(3):515-47. doi: 10.1128/MMBR.64.3.515-547.2000. Microbiol Mol Biol Rev. 2000. PMID: 10974125 Free PMC article. Review.
Cited by
- Novel modulators controlling entry into sporulation in Bacillus subtilis.
Garti-Levi S, Eswara A, Smith Y, Fujita M, Ben-Yehuda S. Garti-Levi S, et al. J Bacteriol. 2013 Apr;195(7):1475-83. doi: 10.1128/JB.02160-12. Epub 2013 Jan 18. J Bacteriol. 2013. PMID: 23335417 Free PMC article. - Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display.
Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J. Gagic D, et al. Front Microbiol. 2016 Apr 7;7:429. doi: 10.3389/fmicb.2016.00429. eCollection 2016. Front Microbiol. 2016. PMID: 27092113 Free PMC article. Review. - Mining proteomic data to expose protein modifications in Methanosarcina mazei strain Gö1.
Leon DR, Ytterberg AJ, Boontheung P, Kim U, Loo JA, Gunsalus RP, Ogorzalek Loo RR. Leon DR, et al. Front Microbiol. 2015 Mar 5;6:149. doi: 10.3389/fmicb.2015.00149. eCollection 2015. Front Microbiol. 2015. PMID: 25798134 Free PMC article. - FlhF, the third signal recognition particle-GTPase of Bacillus subtilis, is dispensable for protein secretion.
Zanen G, Antelmann H, Westers H, Hecker M, van Dijl JM, Quax WJ. Zanen G, et al. J Bacteriol. 2004 Sep;186(17):5956-60. doi: 10.1128/JB.186.17.5956-5960.2004. J Bacteriol. 2004. PMID: 15317803 Free PMC article. - Genes involved in SkfA killing factor production protect a Bacillus subtilis lipase against proteolysis.
Westers H, Braun PG, Westers L, Antelmann H, Hecker M, Jongbloed JD, Yoshikawa H, Tanaka T, van Dijl JM, Quax WJ. Westers H, et al. Appl Environ Microbiol. 2005 Apr;71(4):1899-908. doi: 10.1128/AEM.71.4.1899-1908.2005. Appl Environ Microbiol. 2005. PMID: 15812018 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases