A cellular mechanism of reward-related learning - PubMed (original) (raw)
. 2001 Sep 6;413(6851):67-70.
doi: 10.1038/35092560.
Affiliations
- PMID: 11544526
- DOI: 10.1038/35092560
A cellular mechanism of reward-related learning
J N Reynolds et al. Nature. 2001.
Abstract
Positive reinforcement helps to control the acquisition of learned behaviours. Here we report a cellular mechanism in the brain that may underlie the behavioural effects of positive reinforcement. We used intracranial self-stimulation (ICSS) as a model of reinforcement learning, in which each rat learns to press a lever that applies reinforcing electrical stimulation to its own substantia nigra. The outputs from neurons of the substantia nigra terminate on neurons in the striatum in close proximity to inputs from the cerebral cortex on the same striatal neurons. We measured the effect of substantia nigra stimulation on these inputs from the cortex to striatal neurons and also on how quickly the rats learned to press the lever. We found that stimulation of the substantia nigra (with the optimal parameters for lever-pressing behaviour) induced potentiation of synapses between the cortex and the striatum, which required activation of dopamine receptors. The degree of potentiation within ten minutes of the ICSS trains was correlated with the time taken by the rats to learn ICSS behaviour. We propose that stimulation of the substantia nigra when the lever is pressed induces a similar potentiation of cortical inputs to the striatum, positively reinforcing the learning of the behaviour by the rats.
Similar articles
- Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
Haruno M, Kawato M. Haruno M, et al. Neural Netw. 2006 Oct;19(8):1242-54. doi: 10.1016/j.neunet.2006.06.007. Epub 2006 Sep 20. Neural Netw. 2006. PMID: 16987637 - Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
Hollerman JR, Tremblay L, Schultz W. Hollerman JR, et al. Prog Brain Res. 2000;126:193-215. doi: 10.1016/S0079-6123(00)26015-9. Prog Brain Res. 2000. PMID: 11105648 Review. - Behavioral characterization of intracranial self-stimulation from mesolimbic, mesocortical, nigrostriatal, hypothalamic and extra-hypothalamic sites in the non-inbred CD-1 mouse strain.
Zacharko RM, Kasian M, Irwin J, Zalcman S, LaLonde G, MacNeil G, Anisman H. Zacharko RM, et al. Behav Brain Res. 1990 Jan 22;36(3):251-81. doi: 10.1016/0166-4328(90)90062-j. Behav Brain Res. 1990. PMID: 2310489 - Dopamine's Effects on Corticostriatal Synapses during Reward-Based Behaviors.
Bamford NS, Wightman RM, Sulzer D. Bamford NS, et al. Neuron. 2018 Feb 7;97(3):494-510. doi: 10.1016/j.neuron.2018.01.006. Neuron. 2018. PMID: 29420932 Free PMC article. Review.
Cited by
- Changes in striatal dopamine release associated with human motor-skill acquisition.
Kawashima S, Ueki Y, Kato T, Matsukawa N, Mima T, Hallett M, Ito K, Ojika K. Kawashima S, et al. PLoS One. 2012;7(2):e31728. doi: 10.1371/journal.pone.0031728. Epub 2012 Feb 15. PLoS One. 2012. PMID: 22355391 Free PMC article. - Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies.
Khamassi M, Humphries MD. Khamassi M, et al. Front Behav Neurosci. 2012 Nov 27;6:79. doi: 10.3389/fnbeh.2012.00079. eCollection 2012. Front Behav Neurosci. 2012. PMID: 23205006 Free PMC article. - Expectation modulates neural representations of valence throughout the human brain.
Ramayya AG, Pedisich I, Kahana MJ. Ramayya AG, et al. Neuroimage. 2015 Jul 15;115:214-23. doi: 10.1016/j.neuroimage.2015.04.037. Epub 2015 Apr 30. Neuroimage. 2015. PMID: 25937489 Free PMC article. - Developmental Changes in Dendritic Spine Morphology in the Striatum and Their Alteration in an A53T α-Synuclein Transgenic Mouse Model of Parkinson's Disease.
Parajuli LK, Wako K, Maruo S, Kakuta S, Taguchi T, Ikuno M, Yamakado H, Takahashi R, Koike M. Parajuli LK, et al. eNeuro. 2020 Aug 27;7(4):ENEURO.0072-20.2020. doi: 10.1523/ENEURO.0072-20.2020. Print 2020 Jul/Aug. eNeuro. 2020. PMID: 32817196 Free PMC article. - Single dose of a dopamine agonist impairs reinforcement learning in humans: behavioral evidence from a laboratory-based measure of reward responsiveness.
Pizzagalli DA, Evins AE, Schetter EC, Frank MJ, Pajtas PE, Santesso DL, Culhane M. Pizzagalli DA, et al. Psychopharmacology (Berl). 2008 Feb;196(2):221-32. doi: 10.1007/s00213-007-0957-y. Epub 2007 Oct 2. Psychopharmacology (Berl). 2008. PMID: 17909750 Free PMC article. Clinical Trial.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources