NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II - PubMed (original) (raw)
NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II
M Barboric et al. Mol Cell. 2001 Aug.
Free article
Abstract
To stimulate transcriptional elongation of HIV-1 genes, the transactivator Tat recruits the positive transcription elongation factor b (P-TEFb) to the initiating RNA polymerase II (RNAPII). We found that the activation of transcription by RelA also depends on P-TEFb. Similar to Tat, RelA activated transcription when tethered to RNA. Moreover, TNF-alpha triggered the recruitment of P-TEFb to the NF-kappaB-regulated IL-8 gene. While the formation of the transcription preinitiation complex (PIC) remained unaffected, DRB, an inhibitor of P-TEFb, prevented RNAPII from elongating on the IL-8 gene. Remarkably, DRB inhibition sensitized cells to TNF-alpha-induced apoptosis. Thus, NF-kappaB requires P-TEFb to stimulate the elongation of transcription and P-TEFb plays an unexpected role in regulating apoptosis.
Similar articles
- Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate.
Ramanathan Y, Reza SM, Young TM, Mathews MB, Pe'ery T. Ramanathan Y, et al. J Virol. 1999 Jul;73(7):5448-58. doi: 10.1128/JVI.73.7.5448-5458.1999. J Virol. 1999. PMID: 10364292 Free PMC article. - A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat.
Brès V, Gomes N, Pickle L, Jones KA. Brès V, et al. Genes Dev. 2005 May 15;19(10):1211-26. doi: 10.1101/gad.1291705. Genes Dev. 2005. PMID: 15905409 Free PMC article. - Tat, Tat-associated kinase, and transcription.
Jeang KT. Jeang KT. J Biomed Sci. 1998;5(1):24-7. doi: 10.1007/BF02253352. J Biomed Sci. 1998. PMID: 9570510 Review. - Interplay between positive and negative elongation factors: drawing a new view of DRB.
Yamaguchi Y, Wada T, Handa H. Yamaguchi Y, et al. Genes Cells. 1998 Jan;3(1):9-15. doi: 10.1046/j.1365-2443.1998.00162.x. Genes Cells. 1998. PMID: 9581978 Review.
Cited by
- Immune Regulation in Time and Space: The Role of Local- and Long-Range Genomic Interactions in Regulating Immune Responses.
Devenish LP, Mhlanga MM, Negishi Y. Devenish LP, et al. Front Immunol. 2021 May 11;12:662565. doi: 10.3389/fimmu.2021.662565. eCollection 2021. Front Immunol. 2021. PMID: 34046034 Free PMC article. Review. - Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb.
Wang W, Yao X, Huang Y, Hu X, Liu R, Hou D, Chen R, Wang G. Wang W, et al. Transcription. 2013 Jan-Feb;4(1):39-51. doi: 10.4161/trns.22874. Transcription. 2013. PMID: 23340209 Free PMC article. - Cyclin-Dependent Kinase 9 (CDK9) Inhibitor Atuveciclib Suppresses Intervertebral Disk Degeneration via the Inhibition of the NF-κB Signaling Pathway.
Ni W, Zhang F, Zheng L, Wang L, Liang Y, Ding Y, Yik JHN, Haudenschild DR, Fan S, Hu Z. Ni W, et al. Front Cell Dev Biol. 2020 Sep 10;8:579658. doi: 10.3389/fcell.2020.579658. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 33015073 Free PMC article. - Are BET Inhibitors yet Promising Latency-Reversing Agents for HIV-1 Reactivation in AIDS Therapy?
Salahong T, Schwartz C, Sungthong R. Salahong T, et al. Viruses. 2021 May 29;13(6):1026. doi: 10.3390/v13061026. Viruses. 2021. PMID: 34072421 Free PMC article. Review. - In-depth single-cell analysis of translation-competent HIV-1 reservoirs identifies cellular sources of plasma viremia.
Cole B, Lambrechts L, Gantner P, Noppe Y, Bonine N, Witkowski W, Chen L, Palmer S, Mullins JI, Chomont N, Pardons M, Vandekerckhove L. Cole B, et al. Nat Commun. 2021 Jun 17;12(1):3727. doi: 10.1038/s41467-021-24080-1. Nat Commun. 2021. PMID: 34140517 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources