Optimal nonlinear codes for the perception of natural colours - PubMed (original) (raw)
. 2001 Aug;12(3):395-407.
Affiliations
- PMID: 11563536
Optimal nonlinear codes for the perception of natural colours
T von der Twer et al. Network. 2001 Aug.
Abstract
We discuss how visual nonlinearity can be optimized for the precise representation of environmental inputs. Such optimization leads to neural signals with a compressively nonlinear input-output function the gradient of which is matched to the cube root of the probability density function (PDF) of the environmental input values (and not to the PDF directly as in histogram equalization). Comparisons between theory and psychophysical and electrophysiological data are roughly consistent with the idea that parvocellular (P) cells are optimized for precision representation of colour: their contrast-response functions span a range appropriately matched to the environmental distribution of natural colours along each dimension of colour space. Thus P cell codes for colour may have been selected to minimize error in the perceptual estimation of stimulus parameters for natural colours. But magnocellular (M) cells have a much stronger than expected saturating nonlinearity; this supports the view that the function of M cells is mainly to detect boundaries rather than to specify contrast or lightness.
Similar articles
- [The spherical theory of color perception: its verification by the methods of psychophysics and neurophysiology].
Parameĭ GV, Chernorizov AM. Parameĭ GV, et al. Zh Vyssh Nerv Deiat Im I P Pavlova. 1991 Jul-Aug;41(4):627-35. Zh Vyssh Nerv Deiat Im I P Pavlova. 1991. PMID: 1660642 Russian. - The neural correlate of colour distances revealed with competing synaesthetic and real colours.
Laeng B, Hugdahl K, Specht K. Laeng B, et al. Cortex. 2011 Mar;47(3):320-31. doi: 10.1016/j.cortex.2009.09.004. Epub 2009 Sep 17. Cortex. 2011. PMID: 19819430 - Combining local and global contributions to perceived colour: an analysis of the variability in symmetric and asymmetric colour matching.
Brenner E, Granzier JJ, Smeets JB. Brenner E, et al. Vision Res. 2007 Jan;47(1):114-25. doi: 10.1016/j.visres.2006.09.022. Epub 2006 Nov 7. Vision Res. 2007. PMID: 17087990 - The perception of motion in chromatic stimuli.
Cropper SJ, Wuerger SM. Cropper SJ, et al. Behav Cogn Neurosci Rev. 2005 Sep;4(3):192-217. doi: 10.1177/1534582305285120. Behav Cogn Neurosci Rev. 2005. PMID: 16510893 Review. - The neural representation of gustatory quality.
Smith DV. Smith DV. Prog Clin Biol Res. 1985;176:75-97. Prog Clin Biol Res. 1985. PMID: 3889931 Review. No abstract available.
Cited by
- Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots.
Brainard DH, Williams DR, Hofer H. Brainard DH, et al. J Vis. 2008 May 29;8(5):15.1-23. doi: 10.1167/8.5.15. J Vis. 2008. PMID: 18842086 Free PMC article. - The brightness of colour.
Corney D, Haynes JD, Rees G, Lotto RB. Corney D, et al. PLoS One. 2009;4(3):e5091. doi: 10.1371/journal.pone.0005091. Epub 2009 Mar 31. PLoS One. 2009. PMID: 19333398 Free PMC article. - Adaptation and visual coding.
Webster MA. Webster MA. J Vis. 2011 May 20;11(5):10.1167/11.5.3 3. doi: 10.1167/11.5.3. J Vis. 2011. PMID: 21602298 Free PMC article. Review. - A simple principled approach for modeling and understanding uniform color metrics.
Smet KA, Webster MA, Whitehead LA. Smet KA, et al. J Opt Soc Am A Opt Image Sci Vis. 2016 Mar;33(3):A319-31. doi: 10.1364/JOSAA.33.00A319. J Opt Soc Am A Opt Image Sci Vis. 2016. PMID: 26974939 Free PMC article. - On the synthesis of visual illusions using deep generative models.
Gomez-Villa A, Martín A, Vazquez-Corral J, Bertalmío M, Malo J. Gomez-Villa A, et al. J Vis. 2022 Jul 11;22(8):2. doi: 10.1167/jov.22.8.2. J Vis. 2022. PMID: 35833884 Free PMC article.