Kinetic mechanism of end-to-end annealing of actin filaments - PubMed (original) (raw)
. 2001 Sep 28;312(4):721-30.
doi: 10.1006/jmbi.2001.5005.
Affiliations
- PMID: 11575927
- DOI: 10.1006/jmbi.2001.5005
Kinetic mechanism of end-to-end annealing of actin filaments
E Andrianantoandro et al. J Mol Biol. 2001.
Abstract
We investigated the effect of actin filament length and capping protein on the rate of end-to-end annealing of actin filaments. Long filaments were fragmented by shearing and allowed to recover. Stabilizing filaments with phalloidin in most experiments eliminated any contribution of subunit dissociation and association to the redistribution of lengths but did not affect the results. Two different assays, fluorescence microscopy to measure filament lengths and polymerization to measure concentration of barbed filament ends, gave the same time-course of annealing. The rate of annealing declines with time as the average filament length increases. Longer filaments also anneal slower than short filaments. The second-order annealing rate constant is inversely proportional to mean polymer length with a value of 1.1 mM(-1) s(-1)/length in subunits. Capping protein slows but does not prevent annealing. Annealing is a highly favorable reaction with a strong influence on the length of polymers produced by spontaneous polymerization and should be considered in thinking about polymer dynamics in cells.
Copyright 2001 Academic Press.
Similar articles
- The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins.
Pantaloni D, Boujemaa R, Didry D, Gounon P, Carlier MF. Pantaloni D, et al. Nat Cell Biol. 2000 Jul;2(7):385-91. doi: 10.1038/35017011. Nat Cell Biol. 2000. PMID: 10878802 - Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry.
Sept D, Elcock AH, McCammon JA. Sept D, et al. J Mol Biol. 1999 Dec 17;294(5):1181-9. doi: 10.1006/jmbi.1999.3332. J Mol Biol. 1999. PMID: 10600376 - Mechanism of formin-induced nucleation of actin filaments.
Pring M, Evangelista M, Boone C, Yang C, Zigmond SH. Pring M, et al. Biochemistry. 2003 Jan 21;42(2):486-96. doi: 10.1021/bi026520j. Biochemistry. 2003. PMID: 12525176 - Beginning and ending an actin filament: control at the barbed end.
Zigmond SH. Zigmond SH. Curr Top Dev Biol. 2004;63:145-88. doi: 10.1016/S0070-2153(04)63005-5. Curr Top Dev Biol. 2004. PMID: 15536016 Review.
Cited by
- There is more than one way to model an elephant. Experiment-driven modeling of the actin cytoskeleton.
Ditlev JA, Mayer BJ, Loew LM. Ditlev JA, et al. Biophys J. 2013 Feb 5;104(3):520-32. doi: 10.1016/j.bpj.2012.12.044. Biophys J. 2013. PMID: 23442903 Free PMC article. Review. - In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study.
Mücke N, Winheim S, Merlitz H, Buchholz J, Langowski J, Herrmann H. Mücke N, et al. PLoS One. 2016 Jun 15;11(6):e0157451. doi: 10.1371/journal.pone.0157451. eCollection 2016. PLoS One. 2016. PMID: 27304995 Free PMC article. - Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy.
Amann KJ, Pollard TD. Amann KJ, et al. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15009-13. doi: 10.1073/pnas.211556398. Epub 2001 Dec 11. Proc Natl Acad Sci U S A. 2001. PMID: 11742068 Free PMC article. - Filament rigidity causes F-actin depletion from nonbinding surfaces.
Fisher CI, Kuo SC. Fisher CI, et al. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):133-8. doi: 10.1073/pnas.0804991106. Epub 2008 Dec 22. Proc Natl Acad Sci U S A. 2009. PMID: 19104041 Free PMC article. - Growing actin networks form lamellipodium and lamellum by self-assembly.
Huber F, Käs J, Stuhrmann B. Huber F, et al. Biophys J. 2008 Dec 15;95(12):5508-23. doi: 10.1529/biophysj.108.134817. Epub 2008 Aug 15. Biophys J. 2008. PMID: 18708450 Free PMC article.