Three-dimensional reconstruction of dynamin in the constricted state - PubMed (original) (raw)

Three-dimensional reconstruction of dynamin in the constricted state

P Zhang et al. Nat Cell Biol. 2001 Oct.

Abstract

Members of the dynamin family of GTPases have unique structural properties that might reveal a general mechanochemical basis for membrane constriction. Receptor-mediated endocytosis, caveolae internalization and certain trafficking events in the Golgi all require dynamin for vesiculation. The dynamin-related protein Drp1 (Dlp1) has been implicated in mitochondria fission and a plant dynamin-like protein phragmoplastin is involved in the vesicular events leading to cell wall formation. A common theme among these proteins is their ability to self-assemble into spirals and their localization to areas of membrane fission. Here we present the first three-dimensional structure of dynamin at a resolution of approximately 20 A, determined from cryo-electron micrographs of tubular crystals in the constricted state. The map reveals a T-shaped dimer consisting of three prominent densities: leg, stalk and head. The structure suggests that the dense stalk and head regions rearrange when GTP is added, a rearrangement that generates a force on the underlying lipid bilayer and thereby leads to membrane constriction. These results indicate that dynamin is a force-generating 'contrictase'.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources