Spectroscopic characterization of collagen cross-links in bone - PubMed (original) (raw)
. 2001 Oct;16(10):1821-8.
doi: 10.1359/jbmr.2001.16.10.1821.
Collaborators, Affiliations
- PMID: 11585346
- DOI: 10.1359/jbmr.2001.16.10.1821
Free article
Spectroscopic characterization of collagen cross-links in bone
E P Paschalis et al. J Bone Miner Res. 2001 Oct.
Free article
Abstract
Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.
Similar articles
- Fourier transform Infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links.
Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K. Paschalis EP, et al. Calcif Tissue Int. 2015 Jan;96(1):18-29. doi: 10.1007/s00223-014-9933-9. Epub 2014 Nov 26. Calcif Tissue Int. 2015. PMID: 25424977 - Distribution of collagen cross-links in normal human trabecular bone.
Paschalis EP, Recker R, DiCarlo E, Doty SB, Atti E, Boskey AL. Paschalis EP, et al. J Bone Miner Res. 2003 Nov;18(11):1942-6. doi: 10.1359/jbmr.2003.18.11.1942. J Bone Miner Res. 2003. PMID: 14606505 - Effect of hormone replacement therapy on bone quality in early postmenopausal women.
Paschalis EP, Boskey AL, Kassem M, Eriksen EF. Paschalis EP, et al. J Bone Miner Res. 2003 Jun;18(6):955-9. doi: 10.1359/jbmr.2003.18.6.955. J Bone Miner Res. 2003. PMID: 12817747 Clinical Trial. - FTIR spectro-imaging of collagens for characterization and grading of gliomas.
Noreen R, Moenner M, Hwu Y, Petibois C. Noreen R, et al. Biotechnol Adv. 2012 Nov-Dec;30(6):1432-46. doi: 10.1016/j.biotechadv.2012.03.009. Epub 2012 Mar 30. Biotechnol Adv. 2012. PMID: 22484050 Review. - Cross-linking of collagen.
Tanzer ML. Tanzer ML. Science. 1973 May 11;180(4086):561-6. doi: 10.1126/science.180.4086.561. Science. 1973. PMID: 4573393 Review.
Cited by
- The Phosphate Source Influences Gene Expression and Quality of Mineralization during In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells.
Schäck LM, Noack S, Winkler R, Wißmann G, Behrens P, Wellmann M, Jagodzinski M, Krettek C, Hoffmann A. Schäck LM, et al. PLoS One. 2013 Jun 18;8(6):e65943. doi: 10.1371/journal.pone.0065943. Print 2013. PLoS One. 2013. PMID: 23823126 Free PMC article. - Determinants of microdamage in elderly human vertebral trabecular bone.
Follet H, Farlay D, Bala Y, Viguet-Carrin S, Gineyts E, Burt-Pichat B, Wegrzyn J, Delmas P, Boivin G, Chapurlat R. Follet H, et al. PLoS One. 2013;8(2):e55232. doi: 10.1371/journal.pone.0055232. Epub 2013 Feb 15. PLoS One. 2013. PMID: 23457465 Free PMC article. - Prediction of local ultimate strain and toughness of trabecular bone tissue by Raman material composition analysis.
Carretta R, Stüssi E, Müller R, Lorenzetti S. Carretta R, et al. Biomed Res Int. 2015;2015:457371. doi: 10.1155/2015/457371. Epub 2015 Jan 28. Biomed Res Int. 2015. PMID: 25695083 Free PMC article. - Micro/Nanostructures and Mechanical Properties of Trabecular Bone in Ovariectomized Rats.
Hu S, Li J, Liu L, Dai R, Sheng Z, Wu X, Feng X, Yao X, Liao E, Keller E, Jiang Y. Hu S, et al. Int J Endocrinol. 2015;2015:252503. doi: 10.1155/2015/252503. Epub 2015 Jul 27. Int J Endocrinol. 2015. PMID: 26273294 Free PMC article. - Imaging the material properties of bone specimens using reflection-based infrared microspectroscopy.
Acerbo AS, Carr GL, Judex S, Miller LM. Acerbo AS, et al. Anal Chem. 2012 Apr 17;84(8):3607-13. doi: 10.1021/ac203375d. Epub 2012 Apr 4. Anal Chem. 2012. PMID: 22455306 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources